Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Numerical Predictions of Laminar Forced Convection Heat Transfer with and without Buoyancy Effects from an Isothermal Horizontal Flat Plate to Supercritical Nitrogen

    K. S. Rajendra Prasad1, Sathya Sai2, T. R. Seetharam3, Adithya Garimella1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 889-917, 2024, DOI:10.32604/fhmt.2024.047703 - 11 July 2024

    Abstract Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards. Computations are performed by varying the value of from 5 to 30 K and ratio from 1.1 to 1.5. Variation of all the thermophysical properties of supercritical Nitrogen is considered. The wall temperatures are chosen in such a way that two values of T are less than is the temperature at which the fluid has a maximum value of C for the given pressure), More >

  • Open Access

    ARTICLE

    Morphometry and Mineral Content in the Seeds and Soil of Two Species of Argemone L. (Papaveraceae) in the Central Part of the Chihuahuan Desert

    Perla Patricia Ochoa-García1, Jaime Sánchez-Salas2, Ricardo Trejo-Calzada1, Jesús Josafath Quezada-Rivera2, Fabián García-González1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 371-386, 2024, DOI:10.32604/phyton.2024.048338 - 27 February 2024

    Abstract The genus Argemone L. (Papaveraceae) is found widely distributed in Mexico’s Chihuahuan Desert (CD). Some species of this genus are of phytochemical or ethnobotanical interest. They are inedible plants considered as scrubs. To date they have not been broadly studied; thus, their ecology is, to our knowledge, unknown. The present work was centered around carrying out a morphometric analysis and the determination of minerals in the soil and seeds of the wild populations of Argemone at sites belonging to two ecoregions of the CD in Mexico. In April 2021 and April 2022, seeds of Argemone spp., and… More >

  • Open Access

    ARTICLE

    Buoyancy Effects in the Peristaltic Flow of a Prandtl-Eyring Nanofluid with Slip Boundaries

    Hina Zahir*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1507-1519, 2023, DOI:10.32604/fdmp.2023.022520 - 30 January 2023

    Abstract The interaction of nanoparticles with a peristaltic flow is analyzed considering a Prandtl-Eyring fluid under various conditions, such as the presence of a heat source/sink and slip effects in channels with a curvature. This problem has extensive background links with various fields in medical science such as chemotherapy and more in general nanotechnology. A similarity transformation is used to turn the original balance equations into a set of ordinary differential equations, which are then integrated numerically. The investigation reveals that nanofluids have valuable thermal capabilitises. More >

  • Open Access

    ARTICLE

    Minimizing Buoyancy Factor of Metallic Pressure-Hull Subjected to Hydrostatic Pressure

    Mahmoud Helal1,2, Elsayed Fathallah3,4, Abdulaziz H Alghtani1, Hussein Shawki Osman5, Jong Wan Hu6,7,*, Hasan Eleashy8

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 769-793, 2023, DOI:10.32604/iasc.2023.025618 - 06 June 2022

    Abstract To increase the payload, reduce energy consumption, improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible. This paper introduces a design optimization process for the pressure-hull of submarines under uniform external hydrostatic pressure using both finite element analysis (FEA) and optimization tools. A comprehensive study about the optimum design of the pressure hull, to minimize the weight and increase the volume, to reach minimum buoyancy factor and maximum operating depth minimizing the buoyancy factor (B.F) is taken as an objective function with constraints of plate and frame yielding, general… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Influence of Buoyancy Ratio and Dufour Parameter on Thermosolutal Convection in a Square Salt Gradient Solar Pond

    Yassmine Rghif1,*, Belkacem Zeghmati2, Fatima Bahraoui1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1319-1329, 2022, DOI:10.32604/fdmp.2022.021500 - 27 May 2022

    Abstract This work aims to investigate numerically the influence of the buoyancy ratio and the Dufour parameter on thermosolutal convection in a square Salt Gradient Solar Pond (SGSP). The absorption of solar radiation by the saline water, the heat losses and the wind effects via the SGSP free surface are considered. The mathematical model is based on the Navier-Stokes equations used in synergy with the thermal energy equation. These equations are solved using the finite volume method and the Gauss algorithm. Velocity-pressure coupling is implemented through the SIMPLE algorithm. Simulations of the SGSP are performed for… More >

  • Open Access

    ARTICLE

    Free Convection of a Viscous Electrically Conducting Fluid Past a Stretching Surface

    Abdulmajeed D. Aldabesh1, P. K. Pattnaik2, S. Jena3, S. R. Mishra4, Mouna Ben Henda5, Iskander Tlili5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 205-222, 2022, DOI:10.32604/fdmp.2022.017899 - 16 December 2021

    Abstract Free convection of a viscous electrically conducting liquid past a vertical stretching surface is investigated in the presence of a transverse magnetic field. Natural convection is driven by both thermal and solutal buoyancy. The original partial differential equations governing the problem are turned into a set of ordinary differential equations through a similar variables transformation. This alternate set of equations is solved through a Differential Transform Method (DTM) and the Pade approximation. The response of the considered physical system to the non-dimensional parameters accounting for the relative importance of different effects is assessed considering different More >

  • Open Access

    ARTICLE

    THERMOPHORESIS AND BUOYANCY EFFECTS ON CHEMICALLY REACTIVE UPPER CONVECTED MAXWELL FLUID FLOW INDUCED BY AN EXPONENTIALLY STRETCHING SHEET: APPLICATION OF CATTANEO-CHRISTOV HEAT FLUX

    N.Vijayaa,* , P. Krishna Jyothib, A. Anupamac, R. Leelavathid, K. Ambicae

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.23

    Abstract The main intention of this study is to explore Maxwell fluid under the influence of thermophoresis and buoyancy forces induced by exponentially stretching sheet under chemical reaction. Cattaneo –Christov heat flux model is used to explore heat and mass characteristics with variable magnetic field, and chemical reaction. Variables of similarity were induced to transmute partial differential equations into dimensionless equations and are resolved numerically by elegant method bvp 4c. Behavior of various critical parameters on velocity, temperature and concentrations is graphically presented and discussed. Non Newtonian nature of the Maxwell fluid is clearly explored by More >

  • Open Access

    ARTICLE

    Buoyancy driven Flow of a Second-Grade Nanofluid flow Taking into Account the Arrhenius Activation Energy and Elastic Deformation: Models and Numerical Results

    R. Kalaivanan1, N. Vishnu Ganesh2, Qasem M. Al-Mdallal3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 319-332, 2021, DOI:10.32604/fdmp.2021.012789 - 02 April 2021

    Abstract The buoyancy driven flow of a second-grade nanofluid in the presence of a binary chemical reaction is analyzed in the context of a model based on the balance equations for mass, species concentration, momentum and energy. The elastic properties of the considered fluid are taken into account. The two-dimensional slip flow of such non-Newtonian fluid over a porous flat material which is stretched vertically upwards is considered. The role played by the activation energy is accounted for through an exponent form modified Arrhenius function added to the Buongiorno model for the nanofluid concentration. The effects More >

  • Open Access

    ARTICLE

    Nonlinear Thermal Buoyancy on Ferromagnetic Liquid Stream Over a Radiated Elastic Surface with Non Fourier Heat Flux

    T. K. Sreelakshmi1, Abraham Annamma1, A. S. Chethan1, M. Krishna Murthy2, C. S. K. Raju3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 599-616, 2021, DOI:10.32604/cmes.2021.013077 - 21 January 2021

    Abstract The current article discusses the heat transfer characteristics of ferromagnetic liquid over an elastic surface with the thermal radiation and non-Fourier heat flux. In most of the existing studies, the heat flux is considered as constant, but whereas we incorporated the non-Fourier flux to get the exact performance of the flow. Also, we excluded the PWT and PHF cases to control the boundary layer of the flow. The governing equations related to our contemplate are changed into non-linear ordinary differential equations (ODE’s) by utilizing appropriate similarity changes, which are at the point enlightened by Runge–Kutta… More >

  • Open Access

    ARTICLE

    BUOYANCY RATIO AND HEAT SOURCE EFFECTS ON MHD FLOW OVER AN INCLINED NON-LINEARLY STRETCHING SHEET

    Thirupathi Thummaa,*, M.D. Shamshuddinb

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-12, 2018, DOI:10.5098/hmt.10.5

    Abstract This paper numerically investigates the magnetohydrodynamic boundary layer convective flow of an electrically conducting fluid in the presence of buoyancy ratio, heat source, variable magnetic field and radiation over an inclined nonlinear stretching sheet under convective surface boundary conditions. The Rosseland approximation is adopted for thermal radiation effects and the non-uniform magnetic field applied in a transverse direction to the flow. The coupled nonlinear momentum, thermal and species concentration governing boundary layer equations are rendered into a system of third order momentum and second order energy and mass diffusion ordinary differential equations via similarity transformations… More >

Displaying 1-10 on page 1 of 24. Per Page