Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (77)
  • Open Access

    PROCEEDINGS

    Wrinkling and Buckling of a New Swept Baffled Inflatable Wing Structure

    Nuo Ma1, Qingyang Liu1, Junhui Meng1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011195

    Abstract Due to its flexibility and foldable ability, the inflatable wing is widely employed to loitering munitions and aerostats [1-3]. Meanwhile, as a typical flexible thin-walled structure, the wrinkling and buckling behaviors of the inflatable wing induced in flight will limit its load-bearing capacity [4,5]. Therefore, a wrinkling-resistant structural configuration is the key to improving performance of the inflatable wing. Among various schemes, the swept baffled structure is considered to have the potential to retard wrinkling because of the designable axis of twist [6,7]. However, owing to the flexible large deformation of inflatable wing under aerodynamic… More >

  • Open Access

    PROCEEDINGS

    Design of Honeycomb Sandwich Structures with Curved Edge Cores for Optimal Thermal Buckling Strength

    Zheng Wu1, Pai Liu1, Zhan Kang1, Yiqiang Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011044

    Abstract Honeycomb sandwich structures (HSSs) consist of lightweight cores arranged in periodic polygons [1] between two face sheets. They are widely used in the aerospace industry due to their lightweight but superior strength [2] and energy absorption [3]. As extremely high temperatures might be applied, the sandwich structures may suffer from thermal buckling failure [4] due to thin face walls [5]. This paper designs a new type of HSSs for pursuing optimal thermal buckling strength. The design idea is to replace the vertical straight walls in the honeycomb cores with curved walls. An optimization problem is… More >

  • Open Access

    PROCEEDINGS

    A FE-Based Reduced-Order Modeling Technique with Mixed Kinematics for Geometrically Nonlinear Buckling Analysis of Structures

    Ke Liang1,*, Zheng Li1, Zhen Yin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011625

    Abstract In this work, a finite element based reduced-order technique in the framework of mixed nonlinear kinematics is proposed for the geometrically nonlinear analysis of thin-walled structures [1]. The mixed nonlinear kinematics are established by combining the co-rotational formulation with the updated von Kármán formulation. The co-rotational formulation is selected to calculate the internal force and tangent stiffness of a structure; whereas the third- and fourth-order strain energy derivatives are achieved by the updated von Kármán formulation. For geometrically nonlinear problems with a large deflection, reduced-order models with 1 degree of freedom are constructed using the… More >

  • Open Access

    ARTICLE

    Buckling Optimization of Curved Grid Stiffeners through the Level Set Based Density Method

    Zhuo Huang, Ye Tian, Yifan Zhang, Tielin Shi, Qi Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 711-733, 2024, DOI:10.32604/cmes.2024.045411 - 16 April 2024

    Abstract Stiffened structures have great potential for improving mechanical performance, and the study of their stability is of great interest. In this paper, the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method, where the shape and cross section (including thickness and width) of the stiffeners can be optimized simultaneously. The grid stiffeners are a combination of many single stiffeners which are projected by the corresponding level set functions. The thickness and width of each stiffener are designed to be independent variables in the More >

  • Open Access

    ARTICLE

    Nonlinear Study on the Mechanical Performance of Built-Up Cold-Formed Steel Concrete-Filled Columns under Compression

    Oulfa Harrat1,*, Yazid Hadidane1, S. M. Anas2,*, Nadhim Hamah Sor3,4, Ahmed Farouk Deifalla5, Paul O. Awoyera6, Nadia Gouider1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3435-3465, 2024, DOI:10.32604/cmes.2023.044950 - 11 March 2024

    Abstract Given their numerous functional and architectural benefits, such as improved bearing capacity and increased resistance to elastic instability modes, cold-formed steel (CFS) built-up sections have become increasingly developed and used in recent years, particularly in the construction industry. This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations (back-to-back, face-to-face, and box). These columns were joined by double-row rivets for the back-to-back and box configurations, whereas they were welded together for the face-to-face design. The built-up columns were filled with ordinary concrete of good strength.… More > Graphic Abstract

    Nonlinear Study on the Mechanical Performance of Built-Up Cold-Formed Steel Concrete-Filled Columns under Compression

  • Open Access

    PROCEEDINGS

    Thermal-Mechanical Buckling and Postbuckling Analysis of Thin-Walled Structures Using a Reduced Order Method

    Ke Liang1,*, Zhen Yin1, Zheng Li1, Jiaqi Mu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09020

    Abstract Thermal-mechanical buckling has become one of the major failure modes of thin-walled structures which suffer from the high temperature service environment. These structures, such as plates and shells, are commonly involved in many branches of engineering, especially for the aerospace structures. Thermalmechanical buckling analysis plays an important role for lightweight design of aircrafts and launch vehicles, which significantly influences the load-carrying capability of the structure. Geometrical nonlinearities should be well considered to determine an accurate value of the critical buckling temperature/load as well as the postbuckling response.
    In this work, a reduced-order method is proposed for… More >

  • Open Access

    PROCEEDINGS

    Mechanics of Multiphase Media Under Hyper-gravity Conditions

    Guannan Wang1,*, Yulin Huang1, Lei Wang1, Weijian Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09806

    Abstract With the energetic development of aerospace and aviation industries of our country, it is a critical and onerous mission to protect the life and health of astronauts and aviators. It is already demonstrated in the real flight or centrifuge test that several living organisms would suffer large deformations, instability or even damages under extreme hyper-gravity environment. To overcome the shortcomings from those direct experimental measurements in the literature, the present project will establish a theoretical framework to investigate the deformation and buckling of composite materials or structures systems under hyper-gravity effect. In the meantime, a… More >

  • Open Access

    ARTICLE

    Mechanical Analysis of a Multi-Test String in High-Temperature and High-Pressure Deep Wells

    Zubing Tang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2161-2170, 2023, DOI:10.32604/fdmp.2023.026608 - 04 April 2023

    Abstract The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure, severe dogleg and buckling effects, which in some circumstances can even lead to string failure. Traditional computational methods for the analysis of these behaviors are often inaccurate. For this reason, here a more accurate mechanical model of the test string is introduced by considering variables such as temperature, pressure, wellbore trajectory, and buckling, as well as combining them with the deformation and string constraint conditions brought in by changes in temperature More >

  • Open Access

    PROCEEDINGS

    Post-Buckling and Panel Flutter of Pre-Heated Functionally Graded Plates

    Wei Xia1,2,*, Weilin Kong1, Yupeng Feng1, Shengping Shen1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-2, 2022, DOI:10.32604/icces.2022.08765

    Abstract Post-buckling and panel flutter behaviors of ceramic-metal FGM plates are studied for the skins of supersonic aircrafts. The effects of asymmetric material and temperature distributions, as well as the aerodynamic loads, on the thermo-mechanical response of FGM plates are discussed using finite element simulations. The aero-thermo-elastic model is established by using the simple power law material distribution, the rule of mixture for material effective properties, the nonlinear Fourier equations of heat conduction, von-Karman strain-displacement nonlinear relations, and the piston theory for supersonic aerodynamics. The finite element equations are established using the first-order shear deformable plate… More >

  • Open Access

    ARTICLE

    A Symplectic Method of Numerical Simulation on Local Buckling for Cylindrical Long Shells under Axial Pulse Loads

    Kecheng Li, Jianlong Qu, Jinqiang Tan, Zhanjun Wu, Xinsheng Xu*

    Structural Durability & Health Monitoring, Vol.15, No.1, pp. 53-67, 2021, DOI:10.32604/sdhm.2021.014559 - 22 March 2021

    Abstract In this paper, the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian system. Using this system, critical loads and modes of buckling of shells are reduced to symplectic eigenvalues and eigensolutions respectively. By the symplectic method, the solution of the local buckling of shells can be employed to the expansion series of symplectic eigensolutions in this system. As a result, relationships between critical buckling loads and other factors, such as length of pulse load, thickness of shells and circumferential orders, have been achieved. At the same time, symmetric More >

Displaying 1-10 on page 1 of 77. Per Page