Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    ZnO/ZnS sensor with broadband visible response for flexible polyethylene terephthalate substrates combined with artificial intelligence analysis

    X. Y. Chena,b, Y. H. Caia, Y. S. Chenc, S. J. Huangb, M. H. Lid, Y. H. Lie, C. H. Linc, H. Chena,*

    Chalcogenide Letters, Vol.22, No.9, pp. 777-785, 2025, DOI:10.15251/CL.2025.229.777

    Abstract This study focuses on the development of zinc oxide (ZnO)/zinc sulfide (ZnS) core-shell structures on flexible polyethylene terephthalate (PET) substrates for enhanced light sensing. PET offers high elasticity, optical transparency, and chemical resistance, making it ideal for wearable optoelectronics. By optimizing the vulcanization process, a uniform ZnS shell is formed on the exposed regions of ZnO nanorods (NRs), significantly enhancing ZnO-based sensor’s sensitivity to visible light, especially red light (peak wavelength at 630 nm). Structural and spectral analyses confirm the successful formation of the ZnO/ZnS heterostructure, improved charge separation, and broadened light response. To improve More >

  • Open Access

    ARTICLE

    Shape Sensitivity Analysis of Acoustic Scattering with Series Expansion Boundary Element Methods

    Fan Li1, Hongxue Liu2, Yongsong Li2, Leilei Chen2, Haojie Lian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2785-2809, 2025, DOI:10.32604/cmes.2025.066001 - 30 June 2025

    Abstract This study explores a sensitivity analysis method based on the boundary element method (BEM) to address the computational complexity in acoustic analysis with ground reflection problems. The advantages of BEM in acoustic simulations and its high computational cost in broadband problems are examined. To improve efficiency, a Taylor series expansion is applied to decouple frequency-dependent terms in BEM. Additionally, the Second-Order Arnoldi (SOAR) model order reduction method is integrated to reduce computational costs and enhance numerical stability. Furthermore, an isogeometric sensitivity boundary integral equation is formulated using the direct differentiation method, incorporating Cauchy principal value More >

  • Open Access

    REVIEW

    Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks: Causes, Solutions, and Countermeasures

    Muhammad Qasim Khan1, Fazal Malik1, Fahad Alturise2,*, Noor Rahman3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 123-153, 2025, DOI:10.32604/cmes.2024.057272 - 17 December 2024

    Abstract Control signaling is mandatory for the operation and management of all types of communication networks, including the Third Generation Partnership Project (3GPP) mobile broadband networks. However, they consume important and scarce network resources such as bandwidth and processing power. There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses. This paper draws its motivation from such real network disaster incidents attributed to signaling storms. In this paper, we present a thorough survey of the causes, of the signaling storm problems More >

  • Open Access

    PROCEEDINGS

    On Broadband Continuum Modeling of Lattice Metamaterials

    Jinxing Liu1,*, Binying Wang1, Changqing Peng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011544

    Abstract Unlike classical condensed matters with the characteristic microstructural size far smaller than the undergoing wavelength, lattice metamaterials call for a kind of subwavelength continuum modeling, which should be able to provide successful predictions throughout the first Brillouin zone. We classify lattices into two groups. The first category stands for the mass-spring systems composed of dump masses and massless springs, for which three attempts have been made: the strain gradient continuum based on wavelength-dependent Taylor’s expansion [1, 2], Pade approximation [3] and Symbiotic Optimal Search (SOS) [4], respectively. The results of these newly developed models agree… More >

  • Open Access

    ARTICLE

    Generalized nth-Order Perturbation Method Based on Loop Subdivision Surface Boundary Element Method for Three-Dimensional Broadband Structural Acoustic Uncertainty Analysis

    Ruijin Huo1,2,3, Qingxiang Pei1,2,3, Xiaohui Yuan1,*, Yanming Xu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2053-2077, 2024, DOI:10.32604/cmes.2024.049185 - 20 May 2024

    Abstract In this paper, a generalized th-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems. The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field, and the th-order discretization formulation of the boundary integral equation is derived. In addition, the computation of loop subdivision surfaces and the subdivision rules are introduced. In order to confirm the effectiveness of the algorithm, the computed results are contrasted and analyzed with the results under Monte More >

  • Open Access

    ARTICLE

    Computational Verification of Low-Frequency Broadband Noise from Wind Turbine Blades Using Semi-Empirical Methods

    Vasishta Bhargava Nukala*, Chinmaya Prasad Padhy

    Sound & Vibration, Vol.58, pp. 133-150, 2024, DOI:10.32604/sv.2024.047762 - 19 March 2024

    Abstract A significant aerodynamic noise from wind turbines arises when the rotating blades interact with turbulent flows. Though the trailing edge of the blade is an important source of noise at high frequencies, the present work deals with the influence of turbulence distortion on leading edge noise from wind turbine blades which becomes significant in low-frequency regions. Four quasi-empirical methods are studied to verify the accuracy of turbulent inflow noise predicted at low frequencies for a 2 MW horizontal axis wind turbine. Results have shown that all methods exhibited a downward linear trend in noise spectra More >

  • Open Access

    PROCEEDINGS

    A 1-D Non-Local Metasurface-Based Broadband Acoustic Diffuser

    Zhuoma Wang1, Ruoyan Li2,3, Wenjing Ye2,*, Yijun Liu3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09236

    Abstract An acoustic diffuser refers to a device that spreads sound energy uniformly in all directions. Such a device plays a very important role in architectural acoustics, i.e., concert halls and auditoriums. Many designs such as the wellknown Schroeder diffusers [1] have been proposed and developed throughout the past several decades. However, most of these conventional designs achieve uniform sound diffusion by using different air trenches to create a phase shift profile following a specific sequence such as maximum length sequence or quadratic residue sequence derived from the number theory [1,2]. As such, these diffusers have… More >

  • Open Access

    PROCEEDINGS

    Broadband Electromagnetic Scattering Analysis with Isogeometric Boundary Element Method Accelerated by Frequency-Decoupling and Model Order Reduction Techniques

    Yujing Ma1, Zhongwang Wang2, Xiaohui Yuan1, Leilei Chen2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09662

    Abstract The paper presents a novel fast calculation method for broadband Electromagnetic Scattering analysis. In this work, the isogeometric boundary element method is used to solve Helmholtz equations for the electromagnetic scattering problems. The non-uniform rational B-splines are employed to construct structural geometries and discretize electric and magnetic field integral equations [1,2]. To avoid timeconsuming multi-frequency calculations, the series expansion method is used to decouple the frequencydependent terms from the integrand in the boundary element method [3,4]. The second-order Arnoldi (SOAR) method is applied to construct a reduced-order model that retains the essential structures and key More >

  • Open Access

    ARTICLE

    Graphene-Based Active Tunable Metasurfaces for Dynamic Terahertz Absorption and Polarization Conversion

    Haoran Wei, Tian Ji, Jianqing Huang*

    Journal of Renewable Materials, Vol.11, No.2, pp. 731-743, 2023, DOI:10.32604/jrm.2022.022283 - 22 September 2022

    Abstract Simultaneous broadband absorption and polarization conversion are crucial in many practical applications, especially in terahertz communications. Thus, actively tunable metamaterial systems can exploit the graphene-based nanomaterials derived from renewable resources because of the flexible surface conductivity and selective permeability of the nanomaterials at terahertz frequencies. In this paper, we propose a graphene-based active tunable bifunctional metasurface for dynamic terahertz absorption and polarization conversion. The graphene ring presents a certain opening angle (A) along the diagonal of the xoy plane. When A = 0°, the proposed metasurface behaves as a broadband absorber. Numerical results show the feasibility… More >

  • Open Access

    ARTICLE

    Coupled CUBIC Congestion Control for MPTCP in Broadband Networks

    Jae Yong Lee1, Byung Chul Kim1, Youngmi Kwon1,*, Kimoon Han2

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 99-115, 2023, DOI:10.32604/csse.2023.030801 - 16 August 2022

    Abstract Recently, multipath transmission control protocol (MPTCP) was standardized so that data can be transmitted through multiple paths to utilize all available path bandwidths. However, when high-speed long-distance networks are included in MPTCP paths, the traffic transmission performance of MPTCP is severely deteriorated, especially in case the multiple paths’ characteristics are heavily asymmetric. In order to alleviate this problem, we propose a “Coupled CUBIC congestion control” that adopts TCP CUBIC on a large bandwidth-delay product (BDP) path in a linked increase manner for maintaining fairness with an ordinary TCP traversing the same bottleneck path. To verify the… More >

Displaying 1-10 on page 1 of 21. Per Page