Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    REVIEW

    Broad Learning System for Tackling Emerging Challenges in Face Recognition

    Wenjun Zhang1, Wenfeng Wang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1597-1619, 2023, DOI:10.32604/cmes.2022.020517 - 20 September 2022

    Abstract Face recognition has been rapidly developed and widely used. However, there is still considerable uncertainty in the computational intelligence based on human-centric visual understanding. Emerging challenges for face recognition are resulted from information loss. This study aims to tackle these challenges with a broad learning system (BLS). We integrated two models, IR3C with BLS and IR3C with a triplet loss, to control the learning process. In our experiments, we used different strategies to generate more challenging datasets and analyzed the competitiveness, sensitivity, and practicability of the proposed two models. In the model of IR3C with BLS, More >

  • Open Access

    ARTICLE

    A Learning Framework for Intelligent Selection of Software Verification Algorithms

    Weipeng Cao1, Zhongwu Xie1, Xiaofei Zhou2, Zhiwu Xu1, Cong Zhou1, Georgios Theodoropoulos3, Qiang Wang3,*

    Journal on Artificial Intelligence, Vol.2, No.4, pp. 177-187, 2020, DOI:10.32604/jai.2020.014829 - 31 December 2020

    Abstract Software verification is a key technique to ensure the correctness of software. Although numerous verification algorithms and tools have been developed in the past decades, it is still a great challenge for engineers to accurately and quickly choose the appropriate verification techniques for the software at hand. In this work, we propose a general learning framework for the intelligent selection of software verification algorithms, and instantiate the framework with two state-of-the-art learning algorithms: Broad learning (BL) and deep learning (DL). The experimental evaluation shows that the training efficiency of the BL-based model is much higher More >

Displaying 1-10 on page 1 of 2. Per Page