Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Regenerative Braking Energy Recovery System of Metro Train Based on Dual-Mode Power Management

    Feng Zhao, Xiaotong Zhu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.9, pp. 2585-2601, 2024, DOI:10.32604/ee.2024.049762 - 19 August 2024

    Abstract In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage, a hybrid regenerative braking energy recovery system with a dual-mode power management strategy is proposed. Firstly, the construction of the hybrid regenerative braking energy recovery system is explained. Then, based on the power demand of low-voltage load in metro stations, a dual-mode power management strategy is proposed to allocate the reference power of each system according to the different working conditions, and the control methods of each system are set. Finally, the correctness and effectiveness More > Graphic Abstract

    Regenerative Braking Energy Recovery System of Metro Train Based on Dual-Mode Power Management

  • Open Access

    ARTICLE

    Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis

    Yan Wang*, Siwen Li, Na Wei

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3467-3493, 2024, DOI:10.32604/cmes.2024.046454 - 11 March 2024

    Abstract A novel approach for analyzing coupled vibrations between vehicles and bridges is presented, taking into account spatiotemporal effects and mechanical phenomena resulting from vehicle braking. Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method. The method’s validity and reliability are substantiated through numerical examples. A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed, braking acceleration, braking location, and road surface roughness on the mid-span displacement and impact factor of the bridge… More >

  • Open Access

    ARTICLE

    Research on ECMS Based on Segmented Path Braking Energy Recovery in a Fuel Cell Vehicle

    Wen Sun1, Meijing Li2, Guoxiang Li1, Ke Sun1,*, Shuzhan Bai1,*

    Energy Engineering, Vol.121, No.1, pp. 95-110, 2024, DOI:10.32604/ee.2023.042096 - 27 December 2023

    Abstract Proton exchange membrane fuel cells are widely regarded as having the potential to replace internal combustion engines in vehicles. Since fuel cells cannot recover energy and have a slow dynamic response, they need to be used with different power sources. Developing efficient energy management strategies to achieve excellent fuel economy is the goal of research. This paper proposes an adaptive equivalent fuel minimum consumption strategy (AECMS) to solve the problem of the poor economy of the whole vehicle caused by the wrong selection of equivalent factors (EF) in traditional ECMS. In this method, the kinematics More >

  • Open Access

    ARTICLE

    Simulation and Experimental Design of Load Adaptive Braking System on Two Wheeler

    Ramanjaneyulu Kolla*, Vinayagasundaram Ganesh, Rajendran Sakthivel, Arumugam Kumar Boobalasenthilraj

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 3115-3134, 2023, DOI:10.32604/csse.2023.033077 - 21 December 2022

    Abstract The braking quality is considered the main execution of the adaptive control framework that impacts the vehicle safety and rides solace astoundingly notably the stopping distance. This research work aims to create a pattern and design of an electromechanically adjusted lever that multiplies the applied braking force depending on the inputs given by the sensors to reduce the stopping distance of the vehicle. It is carried out using two main parts of the two-wheeler vehicle: the first part deals with the detection of load acting on the vehicle and identifying the required braking force to… More >

  • Open Access

    ARTICLE

    Energy Management of Networked Smart Railway Stations Considering Regenerative Braking, Energy Storage System, and Photovoltaic Units

    Saeed Akbari1, Seyed Saeed Fazel1,*, Hamed Hashemi-Dezaki2,3

    Energy Engineering, Vol.120, No.1, pp. 69-86, 2023, DOI:10.32604/ee.2022.024121 - 27 October 2022

    Abstract The networking of microgrids has received significant attention in the form of a smart grid. In this paper, a set of smart railway stations, which is assumed as microgrids, is connected together. It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid. Also, the operational costs of stations under various conditions decrease by applying the proposed method. The smart railway stations are studied in the presence of photovoltaic (PV) units, energy storage systems (ESSs), and regenerative braking strategies. Studying regenerative braking is one of… More > Graphic Abstract

    Energy Management of Networked Smart Railway Stations Considering Regenerative Braking, Energy Storage System, and Photovoltaic Units

  • Open Access

    ARTICLE

    Thermomechanical Behavior of Brake Drums Under Extreme Braking Conditions

    T. Khatir1,2, M. Bouchetara2, K. Derrar2, M. Djafri3, S. Khatir4, M. Abdel Wahab5,6,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2259-2273, 2022, DOI:10.32604/cmc.2022.020879 - 29 March 2022

    Abstract Braking efficiency is characterized by reduced braking time and distance, and therefore passenger safety depends on the design of the braking system. During the braking of a vehicle, the braking system must dissipate the kinetic energy by transforming it into heat energy. A too high temperature can lead to an almost total loss of braking efficiency. An excessive rise in brake temperature can also cause surface cracks extending to the outside edge of the drum friction surface. Heat transfer and temperature gradient, not to forget the vehicle's travel environment (high speed, heavy load, and steeply… More >

  • Open Access

    ARTICLE

    Design of Working Model of Steering, Accelerating and Braking Control for Autonomous Parking Vehicle

    P. K. Shyamshankar1, S. Rajendraboopathy2, R. S. Bhuvaneswaran1,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 55-68, 2019, DOI:10.32604/cmc.2019.07761

    Abstract Now a days, the number of vehicles especially cars are increased day by day and the people expect sophistication with safety and they wish automation for the perfection by reducing their effort and to prevent damage from collision of the vehicle. Parking the vehicle has always been a big task for the drivers that lead to problems such as traffic, congestion, accident, pollution etc. In order to overcome the parking problem, an automatic steering, braking and accelerating system is proposed to park a vehicle in a stipulated area and also to enhance the parking in… More >

  • Open Access

    ARTICLE

    Simulation and Data Analysis of Energy Recovery Sensing on a Parallel Hydraulic Hybrid Crane

    Youquan Chen, Xinhui Liu, Xin Wang, Jinshi Chen

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 613-622, 2018, DOI:10.31209/2018.100000028

    Abstract In order to study the braking energy regeneration characteristics of the Frontmounted Parallel Hydraulic Hybrid Crane (FPHHC), the AMESim simulation models are established and analyzed by establishing the vehicle dynamics model and referencing to the actual data of the crane and physical hydraulic components, the simulation results are verified by road tests on the experimental prototype. The experiment results basically match with the simulation results. In the vehicle braking process, the hydraulic hybrid system of the experimental prototype can effectively recycle the vehicle braking energy, the energy recovery rate is up to 50.84%, and the More >

  • Open Access

    ARTICLE

    Optimal Learning Slip Ratio Control for Tractor-semitrailer Braking in a Turn based on Fuzzy Logic

    Jinsong Donga, Hongwei Zhanga, Ronghui Zhangb,*, Xiaohong Jinc, Fang Chend

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 563-570, 2018, DOI:10.31209/2018.100000023

    Abstract The research on braking performance a of tractor-semitrailer is a hard and difficult point in the field of vehicle reliability and safety technology. In this paper, the tire braking model and the dynamic characteristic model of the brake torque with the variable of the controlling air pressure were established. We also established a nonlinear kinematic model of the tractor-semitrailer when it brakes on a curve. The parameters and variables of the model were measured and determined by the road experiment test. The optimal control strategy for the tractor-semitrailer based on the optimal slipping ratio was More >

  • Open Access

    ARTICLE

    Aerothermodynamic and Feasibility Study of a Deployable Aerobraking Re-Entry Capsule

    R. Savino1, V. Carandente1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 453-476, 2012, DOI:10.3970/fdmp.2012.008.453

    Abstract A new small recoverable re-entry capsule with deployable heat shield is analyzed. The possible utilization of the capsule is for safe Earth return of science payloads or data from low Earth orbit at an inexpensive cost, taking advantage of its deployable structure to perform an aerobraking re-entry mission, with relatively low heat and mechanical loads. The system concept for the heat shield is based on umbrella-like frameworks and existing ceramic fabrics. An aerothermodynamic analysis is developed to show that the peak heat flux, for a capsule with a ballistic coefficient lower than 10 kg/m2, is in More >

Displaying 1-10 on page 1 of 10. Per Page