Maham Khan1, Syed Adnan Shah1, Tenvir Ali2, Quratulain2, Aymen Khan2, Gyu Sang Choi3,*
CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5005-5020, 2022, DOI:10.32604/cmc.2022.023007
- 14 January 2022
Abstract Brain tumors are considered as most fatal cancers. To reduce the risk of death, early identification of the disease is required. One of the best available methods to evaluate brain tumors is Magnetic resonance Images (MRI). Brain tumor detection and segmentation are tough as brain tumors may vary in size, shape, and location. That makes manual detection of brain tumors by exploring MRI a tedious job for radiologists and doctors’. So an automated brain tumor detection and segmentation is required. This work suggests a Region-based Convolution Neural Network (RCNN) approach for automated brain tumor identification… More >