Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    CORRECTION

    Correction: An Effective Diagnosis System for Brain Tumor Detection and Classification

    Ahmed A. Alsheikhy1, Ahmad S. Azzahrani1, A. Khuzaim Alzahrani2, Tawfeeq Shawly3

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 853-853, 2024, DOI:10.32604/csse.2024.051630 - 20 May 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    L-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1975-1994, 2024, DOI:10.32604/cmc.2024.049228 - 15 May 2024

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is… More >

  • Open Access

    ARTICLE

    An Effective Diagnosis System for Brain Tumor Detection and Classification

    Ahmed A. Alsheikhy1,*, Ahmad S. Azzahrani1, A. Khuzaim Alzahrani2, Tawfeeq Shawly3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2021-2037, 2023, DOI:10.32604/csse.2023.036107 - 09 February 2023

    Abstract A brain tumor is an excessive development of abnormal and uncontrolled cells in the brain. This growth is considered deadly since it may cause death. The brain controls numerous functions, such as memory, vision, and emotions. Due to the location, size, and shape of these tumors, their detection is a challenging and complex task. Several efforts have been conducted toward improved detection and yielded promising results and outcomes. However, the accuracy should be higher than what has been reached. This paper presents a method to detect brain tumors with high accuracy. The method works using… More >

  • Open Access

    ARTICLE

    Computer-Aided Diagnosis Model Using Machine Learning for Brain Tumor Detection and Classification

    M. Uvaneshwari1, M. Baskar2,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1811-1826, 2023, DOI:10.32604/csse.2023.035455 - 09 February 2023

    Abstract The Brain Tumor (BT) is created by an uncontrollable rise of anomalous cells in brain tissue, and it consists of 2 types of cancers they are malignant and benign tumors. The benevolent BT does not affect the neighbouring healthy and normal tissue; however, the malignant could affect the adjacent brain tissues, which results in death. Initial recognition of BT is highly significant to protecting the patient’s life. Generally, the BT can be identified through the magnetic resonance imaging (MRI) scanning technique. But the radiotherapists are not offering effective tumor segmentation in MRI images because of… More >

  • Open Access

    ARTICLE

    Nonlinear Teager-Kaiser Infomax Boost Clustering Algorithm for Brain Tumor Detection Technique

    P. M. Siva Raja1,*, S. Brinthakumari2, K. Ramanan3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2589-2599, 2023, DOI:10.32604/csse.2023.028542 - 09 February 2023

    Abstract Brain tumor detection and division is a difficult tedious undertaking in clinical image preparation. When it comes to the new technology that enables accurate identification of the mysterious tissues of the brain, magnetic resonance imaging (MRI) is a great tool. It is possible to alter the tumor’s size and shape at any time for any number of patients by using the Brain picture. Radiologists have a difficult time sorting and classifying tumors from multiple images. Brain tumors may be accurately detected using a new approach called Nonlinear Teager-Kaiser Iterative Infomax Boost Clustering-Based Image Segmentation (NTKFIBC-IS).… More >

  • Open Access

    ARTICLE

    Brain Tumor Detection and Classification Using PSO and Convolutional Neural Network

    Muhammad Ali1, Jamal Hussain Shah1, Muhammad Attique Khan2, Majed Alhaisoni3, Usman Tariq4, Tallha Akram5, Ye Jin Kim6, Byoungchol Chang7,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4501-4518, 2022, DOI:10.32604/cmc.2022.030392 - 28 July 2022

    Abstract Tumor detection has been an active research topic in recent years due to the high mortality rate. Computer vision (CV) and image processing techniques have recently become popular for detecting tumors in MRI images. The automated detection process is simpler and takes less time than manual processing. In addition, the difference in the expanding shape of brain tumor tissues complicates and complicates tumor detection for clinicians. We proposed a new framework for tumor detection as well as tumor classification into relevant categories in this paper. For tumor segmentation, the proposed framework employs the Particle Swarm… More >

  • Open Access

    ARTICLE

    Brain Tumor Detection and Segmentation Using RCNN

    Maham Khan1, Syed Adnan Shah1, Tenvir Ali2, Quratulain2, Aymen Khan2, Gyu Sang Choi3,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5005-5020, 2022, DOI:10.32604/cmc.2022.023007 - 14 January 2022

    Abstract Brain tumors are considered as most fatal cancers. To reduce the risk of death, early identification of the disease is required. One of the best available methods to evaluate brain tumors is Magnetic resonance Images (MRI). Brain tumor detection and segmentation are tough as brain tumors may vary in size, shape, and location. That makes manual detection of brain tumors by exploring MRI a tedious job for radiologists and doctors’. So an automated brain tumor detection and segmentation is required. This work suggests a Region-based Convolution Neural Network (RCNN) approach for automated brain tumor identification… More >

  • Open Access

    ARTICLE

    Nature-Inspired Level Set Segmentation Model for 3D-MRI Brain Tumor Detection

    Oday Ali Hassen1, Sarmad Omar Abter2, Ansam A. Abdulhussein3, Saad M. Darwish4,*, Yasmine M. Ibrahim4, Walaa Sheta5

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 961-981, 2021, DOI:10.32604/cmc.2021.014404 - 22 March 2021

    Abstract Medical image segmentation has consistently been a significant topic of research and a prominent goal, particularly in computer vision. Brain tumor research plays a major role in medical imaging applications by providing a tremendous amount of anatomical and functional knowledge that enhances and allows easy diagnosis and disease therapy preparation. To prevent or minimize manual segmentation error, automated tumor segmentation, and detection became the most demanding process for radiologists and physicians as the tumor often has complex structures. Many methods for detection and segmentation presently exist, but all lack high accuracy. This paper’s key contribution… More >

  • Open Access

    ARTICLE

    A Learning Based Brain Tumor Detection System

    Sultan Noman Qasem1,2, Amar Nazar3, Attia Qamar4, Shahaboddin Shamshirband5,6,*, Ahmad Karim4

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 713-727, 2019, DOI:10.32604/cmc.2019.05617

    Abstract Brain tumor is one of the most dangerous disease that causes due to uncontrollable and abnormal cell partition. In this paper, we have used MRI brain scan in comparison with CT brain scan as it is less harmful to detect brain tumor. We considered watershed segmentation technique for brain tumor detection. The proposed methodology is divided as follows: pre-processing, computing foreground applying watershed, extract and supply features to machine learning algorithms. Consequently, this study is tested on big data set of images and we achieved acceptable accuracy from K-NN classification algorithm in detection of brain More >

Displaying 1-10 on page 1 of 9. Per Page