Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

    Qiankun Zuo1,4, Junhua Hu2, Yudong Zhang3,*, Junren Pan4, Changhong Jing4, Xuhang Chen5, Xiaobo Meng6, Jin Hong7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2129-2147, 2023, DOI:10.32604/cmes.2023.028732 - 03 August 2023

    Abstract The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven… More > Graphic Abstract

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

  • Open Access

    ARTICLE

    Brain Functional Networks with Dynamic Hypergraph Manifold Regularization for Classification of End-Stage Renal Disease Associated with Mild Cognitive Impairment

    Zhengtao Xi1, Chaofan Song2, Jiahui Zheng3, Haifeng Shi3, Zhuqing Jiao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2243-2266, 2023, DOI:10.32604/cmes.2023.023544 - 23 November 2022

    Abstract The structure and function of brain networks have been altered in patients with end-stage renal disease (ESRD). Manifold regularization (MR) only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions. To solve this issue, we developed a method to construct a dynamic brain functional network (DBFN) based on dynamic hypergraph MR (DHMR) and applied it to the classification of ESRD associated with mild cognitive impairment (ESRDaMCI). The construction of DBFN with Pearson’s correlation (PC) was transformed into an optimization model. Node convolution and hyperedge convolution… More > Graphic Abstract

    Brain Functional Networks with Dynamic Hypergraph Manifold Regularization for Classification of End-Stage Renal Disease Associated with Mild Cognitive Impairment

  • Open Access

    ARTICLE

    Extracting Sub-Networks from Brain Functional Network Using Graph Regularized Nonnegative Matrix Factorization

    Zhuqing Jiao1, *, Yixin Ji1, Tingxuan Jiao1, Shuihua Wang2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 845-871, 2020, DOI:10.32604/cmes.2020.08999 - 01 May 2020

    Abstract Currently, functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders. If one brain disease just manifests as some cognitive dysfunction, it means that the disease may affect some local connectivity in the brain functional network. That is, there are functional abnormalities in the sub-network. Therefore, it is crucial to accurately identify them in pathological diagnosis. To solve these problems, we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization (GNMF). The dynamic functional networks of normal subjects and early mild cognitive impairment (eMCI) subjects were… More >

Displaying 1-10 on page 1 of 3. Per Page