Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    SC-Net: A New U-Net Network for Hippocampus Segmentation

    Xinyi Xiao, Dongbo Pan*, Jianjun Yuan

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3179-3191, 2023, DOI:10.32604/iasc.2023.041208 - 11 September 2023

    Abstract Neurological disorders like Alzheimer’s disease have a significant impact on the lives and health of the elderly as the aging population continues to grow. Doctors can achieve effective prevention and treatment of Alzheimer’s disease according to the morphological volume of hippocampus. General segmentation techniques frequently fail to produce satisfactory results due to hippocampus’s small size, complex structure, and fuzzy edges. We develop a new SC-Net model using complete brain MRI images to achieve high-precision segmentation of hippocampal structures. The proposed network improves the accuracy of hippocampal structural segmentation by retaining the original location information of More >

  • Open Access

    ARTICLE

    Feature Enhanced Stacked Auto Encoder for Diseases Detection in Brain MRI

    Umair Muneer Butt1,2,*, Rimsha Arif2, Sukumar Letchmunan1,*, Babur Hayat Malik2, Muhammad Adil Butt2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2551-2570, 2023, DOI:10.32604/cmc.2023.039164 - 30 August 2023

    Abstract The detection of brain disease is an essential issue in medical and research areas. Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging (MRI) images. These techniques involve training neural networks on large datasets of MRI images, allowing the networks to learn patterns and features indicative of different brain diseases. However, several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques. This paper implements a Feature Enhanced Stacked Auto Encoder (FESAE) model to detect brain diseases. The standard… More >

  • Open Access

    ARTICLE

    De-Noising Brain MRI Images by Mixing Concatenation and Residual Learning (MCR)

    Kazim Ali1,*, Adnan N. Qureshi1, Muhammad Shahid Bhatti2, Abid Sohail2, Muhammad Hijji3, Atif Saeed2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1167-1186, 2023, DOI:10.32604/csse.2023.032508 - 03 November 2022

    Abstract Brain magnetic resonance images (MRI) are used to diagnose the different diseases of the brain, such as swelling and tumor detection. The quality of the brain MR images is degraded by different noises, usually salt & pepper and Gaussian noises, which are added to the MR images during the acquisition process. In the presence of these noises, medical experts are facing problems in diagnosing diseases from noisy brain MR images. Therefore, we have proposed a de-noising method by mixing concatenation, and residual deep learning techniques called the MCR de-noising method. Our proposed MCR method is… More >

  • Open Access

    ARTICLE

    Epileptic Seizures Diagnosis Using Amalgamated Extremely Focused EEG Signals and Brain MRI

    Farah Mohammad*, Saad Al-Ahmadi

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 623-639, 2023, DOI:10.32604/cmc.2023.032552 - 22 September 2022

    Abstract

    There exists various neurological disorder based diseases like tumor, sleep disorder, headache, dementia and Epilepsy. Among these, epilepsy is the most common neurological illness in humans, comparable to stroke. Epilepsy is a severe chronic neurological illness that can be discovered through analysis of the signals generated by brain neurons and brain Magnetic resonance imaging (MRI). Neurons are intricately coupled in order to communicate and generate signals from human organs. Due to the complex nature of electroencephalogram (EEG) signals and MRI’s the epileptic seizures detection and brain related problems diagnosis becomes a challenging task. Computer based

    More >

  • Open Access

    ARTICLE

    Analysis of Brain MRI: AI-Assisted Healthcare Framework for the Smart Cities

    Walid El-Shafai1,*, Randa Ali1, Ahmed Sedik2, Taha El-Sayed Taha1, Mohammed Abd-Elnaby3, Fathi E. Abd El-Samie1

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1843-1856, 2023, DOI:10.32604/iasc.2023.019198 - 19 July 2022

    Abstract The use of intelligent machines to work and react like humans is vital in emerging smart cities. Computer-aided analysis of complex and huge MRI (Magnetic Resonance Imaging) scans is very important in healthcare applications. Among AI (Artificial Intelligence) driven healthcare applications, tumor detection is one of the contemporary research fields that have become attractive to researchers. There are several modalities of imaging performed on the brain for the purpose of tumor detection. This paper offers a deep learning approach for detecting brain tumors from MR (Magnetic Resonance) images based on changes in the division of… More >

  • Open Access

    ARTICLE

    A New Medical Image Enhancement Algorithm Based on Fractional Calculus

    Hamid A. Jalab1,*, Rabha W. Ibrahim2, Ali M. Hasan3, Faten Khalid Karim4, Ala’a R. Al-Shamasneh1, Dumitru Baleanu5,6,7

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1467-1483, 2021, DOI:10.32604/cmc.2021.016047 - 13 April 2021

    Abstract The enhancement of medical images is a challenging research task due to the unforeseeable variation in the quality of the captured images. The captured images may present with low contrast and low visibility, which might influence the accuracy of the diagnosis process. To overcome this problem, this paper presents a new fractional integral entropy (FITE) that estimates the unforeseeable probabilities of image pixels, posing as the main contribution of the paper. The proposed model dynamically enhances the image based on the image contents. The main advantage of FITE lies in its capability to enhance the… More >

  • Open Access

    ARTICLE

    Brain MRI Patient Identification Based on Capsule Network

    Shuqiao Liu, Junliang Li, Xiaojie Li*

    Journal on Internet of Things, Vol.2, No.4, pp. 135-144, 2020, DOI:10.32604/jiot.2020.09797 - 22 September 2020

    Abstract In the deep learning field, “Capsule” structure aims to overcome the shortcomings of traditional Convolutional Neural Networks (CNN) which are difficult to mine the relationship between sibling features. Capsule Net (CapsNet) is a new type of classification network structure with “Capsule” as network elements. It uses the “Squashing” algorithm as an activation function and Dynamic Routing as a network optimization method to achieve better classification performance. The main problem of the Brain Magnetic Resonance Imaging (Brain MRI) recognition algorithm is that the difference between Alzheimer’s disease (AD) image, the Mild Cognitive Impairment (MCI) image, and… More >

Displaying 1-10 on page 1 of 7. Per Page