Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ARTICLE

    Optimal Shape Factor and Fictitious Radius in the MQ-RBF: Solving Ill-Posed Laplacian Problems

    Chein-Shan Liu1, Chung-Lun Kuo1, Chih-Wen Chang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3189-3208, 2024, DOI:10.32604/cmes.2023.046002 - 11 March 2024

    Abstract To solve the Laplacian problems, we adopt a meshless method with the multiquadric radial basis function (MQ-RBF) as a basis whose center is distributed inside a circle with a fictitious radius. A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function. A sample function is interpolated by the MQ-RBF to provide a trial coefficient vector to compute the merit function. We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm. The novel method provides the More >

  • Open Access

    ARTICLE

    Wavelet Multi-Resolution Interpolation Galerkin Method for Linear Singularly Perturbed Boundary Value Problems

    Jiaqun Wang1,2, Guanxu Pan2, Youhe Zhou2, Xiaojing Liu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 297-318, 2024, DOI:10.32604/cmes.2023.030622 - 30 December 2023

    Abstract In this study, a wavelet multi-resolution interpolation Galerkin method (WMIGM) is proposed to solve linear singularly perturbed boundary value problems. Unlike conventional wavelet schemes, the proposed algorithm can be readily extended to special node generation techniques, such as the Shishkin node. Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients. All the shape functions possess the Kronecker delta property, making the imposition of boundary conditions as easy as that in the finite element method. Four numerical examples are studied to demonstrate the validity More >

  • Open Access

    ARTICLE

    Efficient Numerical Scheme for Solving Large System of Nonlinear Equations

    Mudassir Shams1, Nasreen Kausar2,*, Shams Forruque Ahmed3, Irfan Anjum Badruddin4, Syed Javed4

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5331-5347, 2023, DOI:10.32604/cmc.2023.033528 - 28 December 2022

    Abstract A fifth-order family of an iterative method for solving systems of nonlinear equations and highly nonlinear boundary value problems has been developed in this paper. Convergence analysis demonstrates that the local order of convergence of the numerical method is five. The computer algebra system CAS-Maple, Mathematica, or MATLAB was the primary tool for dealing with difficult problems since it allows for the handling and manipulation of complex mathematical equations and other mathematical objects. Several numerical examples are provided to demonstrate the properties of the proposed rapidly convergent algorithms. A dynamic evaluation of the presented methods More >

  • Open Access

    ARTICLE

    ANALYSIS OF LAMINAR BOUNDARY-LAYER FLOW OVER A MOVING WEDGE USING A UNIFORM HAAR WAVELET METHOD

    Harinakshi Karkeraa , Nagaraj N. Katagia,† , Ramesh B. Kudenattib

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-10, 2022, DOI:10.5098/hmt.18.41

    Abstract In this paper, we study the characteristics of laminar boundary-layer flow of a viscous incompressible fluid over a moving wedge. The transformed boundary-layer equation given by the Falkner-Skan equation is solved by an efficient easy-to-use approximate method based on uniform Haar wavelets in conjunction with quasilinearization and collocation approach. The residual and error estimates are computed to confirm the validity of the obtained results. A meaningful comparison between the present solutions with existing numerical results in the literature is carried out to highlight the benefits and efficiency of proposed method. Furthermore, the influence of variable More >

  • Open Access

    ARTICLE

    A Pseudo-Spectral Scheme for Systems of Two-Point Boundary Value Problems with Left and Right Sided Fractional Derivatives and Related Integral Equations

    I. G. Ameen1, N. A. Elkot2, M. A. Zaky3,*, A. S. Hendy4,5, E. H. Doha2

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 21-41, 2021, DOI:10.32604/cmes.2021.015310 - 28 June 2021

    Abstract We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left- and right-sided fractional derivatives. The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations. Then, a Legendre-based spectral collocation method is developed for solving the transformed system. Therefore, we can make good use of the advantages of the Gauss quadrature rule. We present the construction and analysis of the collocation method. These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding More >

  • Open Access

    ARTICLE

    Spectral Solutions of Linear and Nonlinear BVPs Using Certain Jacobi Polynomials Generalizing Third- and Fourth-Kinds of Chebyshev Polynomials

    W. M. Abd-Elhameed1,2,*, Asmaa M. Alkenedri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 955-989, 2021, DOI:10.32604/cmes.2021.013603 - 19 February 2021

    Abstract This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems. For this purpose, we establish new explicit formulas for the high-order derivatives of certain two classes of Jacobi polynomials in terms of their corresponding Jacobi polynomials. These two classes generalize the two celebrated non-symmetric classes of polynomials, namely, Chebyshev polynomials of third- and fourth-kinds. The idea of the derivation of such formulas is essentially based on making use of the power series representations and inversion formulas of these classes of polynomials. The derived formulas More >

  • Open Access

    ARTICLE

    Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems

    Cosmin Anitescu1, Elena Atroshchenko2, Naif Alajlan3, Timon Rabczuk3,*

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 345-359, 2019, DOI:10.32604/cmc.2019.06641

    Abstract We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy. In this procedure, a coarse grid of training points is used at the initial training stages, while more points are added at later stages based on the value of the residual at a larger set of evaluation points. This method increases the robustness of the neural network approximation and can result in significant computational savings, particularly when the solution is non-smooth. Numerical results are presented for benchmark problems for scalar-valued PDEs, namely Poisson and Helmholtz equations, as More >

  • Open Access

    ARTICLE

    Low Thrust Minimum Time Orbit Transfer Nonlinear Optimization Using Impulse Discretization via the Modified Picard–Chebyshev Method

    Darin Koblick1,2,3, Shujing Xu4, Joshua Fogel5, Praveen Shankar1

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.1, pp. 1-27, 2016, DOI:10.3970/cmes.2016.111.001

    Abstract The Modified Picard-Chebyshev Method (MPCM) is implemented as an orbit propagation solver for a numerical optimization method that determines minimum time orbit transfer trajectory of a satellite using a series of multiple impulses at intermediate waypoints. The waypoints correspond to instantaneous impulses that are determined using a nonlinear constrained optimization routine, SNOPT with numerical force models for both Two-Body and J2 perturbations. It is found that using the MPCM increases run-time performance of the discretized lowthrust optimization method when compared to other sequential numerical solvers, such as Adams-Bashforth-Moulton and Gauss-Jackson 8th order methods. More >

  • Open Access

    ARTICLE

    The Lie-group Shooting Method for Radial Symmetric Solutions of the Yamabe Equation

    S. Abbasbandy1,2, R.A. Van Gorder3, M. Hajiketabi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.4, pp. 329-351, 2015, DOI:10.3970/cmes.2015.104.329

    Abstract We transform the Yamabe equation on a ball of arbitrary dimension greater than two into a nonlinear singularly boundary value problem on the unit interval [0,1]. Then we apply Lie-group shooting method (LGSM) to search a missing initial condition of slope through a weighting factor r ∈ (0,1). The best r is determined by matching the right-end boundary condition. When the initial slope is available we can apply the group preserving scheme (GPS) to calculate the solution, which is highly accurate. By LGSM we obtain precise radial symmetric solutions of the Yamabe equation. These results are useful More >

  • Open Access

    ARTICLE

    On Solving Linear and Nonlinear Sixth-Order Two Point Boundary Value Problems Via an Elegant Harmonic Numbers Operational Matrix of Derivatives

    W.M. Abd- Elhameed1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.3, pp. 159-185, 2014, DOI:10.3970/cmes.2014.101.159

    Abstract This paper is concerned with developing two new algorithms for direct solutions of linear and nonlinear sixth-order two point boundary value problems. These algorithms are based on the application of the two spectral methods namely, collocation and Petrov-Galerkin methods. The suggested algorithms are completely new and they depend on introducing a novel operational matrix of derivatives which is expressed in terms of the well-known harmonic numbers. The basic idea for the suggested algorithms rely on reducing the linear or nonlinear sixth-order boundary value problem governed by its boundary conditions to a system of linear or More >

Displaying 1-10 on page 1 of 38. Per Page