Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (83)
  • Open Access

    ARTICLE

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

    Ivan Sboev1,*, Tatyana Lyubimova2,3, Konstantin Rybkin3, Michael Kuchinskiy2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1425-1439, 2024, DOI:10.32604/fdmp.2024.051341

    Abstract The intensification of physicochemical processes in the sonochemical reactor chamber is widely used in problems of synthesis, extraction and separation. One of the most important mechanisms at play in such processes is the acoustic cavitation due to the non-uniform distribution of acoustic pressure in the chamber. Cavitation has a strong impact on the surface degradation mechanisms. In this work, a numerical calculation of the acoustic pressure distribution inside the reactor chamber was performed using COMSOL Multiphysics. The numerical results have revealed the dependence of the structure of the acoustic pressure field on the boundary conditions More > Graphic Abstract

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

  • Open Access

    ARTICLE

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al2O3-Eg and TiO2-Eg Fluids on a Stretched Surface

    K. Jyothi1, Abhishek Dasore2,3,*, R. Ganapati4, Sk. Mohammad Shareef5, Ali J. Chamkha6, V. Raghavendra Prasad7

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 79-105, 2024, DOI:10.32604/fhmt.2024.046891

    Abstract In the current research, a thorough examination unfolds concerning the attributes of magnetohydrodynamic (MHD) boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al2O3-Eg and TiO2-Eg compositions. Such nanoliquids are subjected to an extending surface. Consideration is duly given to slip boundary conditions, as well as the effects stemming from variable viscosity and variable thermal conductivity. The analytical approach applied involves the application of suitable similarity transformations. These conversions serve to transform the initial set of complex nonlinear partial differential equations into a more manageable assembly of ordinary differential equations. Through the utilization… More > Graphic Abstract

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al<sub>2</sub>O<sub>3</sub>-Eg and TiO<sub>2</sub>-Eg Fluids on a Stretched Surface

  • Open Access

    ARTICLE

    THE STUDY OF TEMPERATURE PROFILE INSIDE WAX DEPOSITION LAYER OF WAXY CRUDE OIL IN PIPELINE

    Zhen Tiana,*, Wenbo Jina, Lei Wangb, Zhi Jinc

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-8, 2014, DOI:10.5098/hmt.5.5

    Abstract Taking the axial heat conduction of wax deposition layer into account, a two-dimensional heat transfer model of calculating the temperature profile inside wax deposition layer was deduced and established based on the energy balance equation, the finite difference method was used to solve this model, and the influence of axial heat conduction on the distribution law of temperature profile inside the wax deposition layer under different boundary conditions and thickness were discussed. The results showed that: Temperature profile inside wax deposition layer in middle region of testing pipe section was mainly influenced by axial heat More >

  • Open Access

    ARTICLE

    MIXED CONVECTION BOUNDARY LAYER FLOW OVER A VERTICALLY STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITION AND EFFECT OF PARTIAL SLIP

    Mitiku Daba*, P. Devaraj, S. V. Subhashini

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.3

    Abstract In the present study, we investigated a problem of steady laminar mixed convection flow over a vertically stretching sheet with partial slip under convective surface boundary condition. The governing partial differential equations of the boundary layer flow are reduced into a set of nonlinear ordinary differential equations using a suitable similarity transformations. The system of non linear ordinary differential equations are solved by the Keller box method. Velocity, temperature and heat transfer rate are analyzed by considering the important parameters: Prandtl number Pr, convective parameter ε, slip parameter K and mixed convection parameter λ on the More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF NATURAL CONVECTION FROM A PAIR OF HOT CYLINDERS IN A COLD SQUARE ENCLOSURE IN DIFFERENT BOUNDARY CONDITIONS

    Niki Rezazadeh, Rezvan Abdi*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.30

    Abstract This study investigates the heat transfer in the mode of natural convection from a pair of hot cylinders to a cold square enclosure. Effects of boundary conditions of the enclosure on the rate of heat transfer from a pair of isothermal hot cylinders are investigated at a Rayleigh number of 105 . The cylinders are arranged in a horizontal array at the middle height of enclosure. The commercial software, Fluent (V.6.3.26), is utilized to solve the problem using the Finite Volume Method. The streamlines as well as isothermal lines of the problem are reported. Moreover, the More >

  • Open Access

    ARTICLE

    MAGNETOHYDRODYNAMIC(MHD) STAGNATION POINT FLOW AND HEAT TRANSFER OF UPPER-CONVECTED MAXWELL FLUID PAST A STRETCHING SHEET IN THE PRESENCE OF NANOPARTICLES WITH CONVECTIVE HEATING

    Wubshet Ibrahim

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-10, 2016, DOI:10.5098/hmt.7.4

    Abstract The study scrutinizes the effect of convective heating on magnetohydrodynamic (MHD) stagnation point flow and heat transfer of upper-convected Maxell fluid p ast a s tretching s heet i n t he p resence o f n anoparticles. T he m odel u sed i n t he s tudy i ncludes t he e ffect o f B rownian m otion and thermophoresis parameters. The non-linear governing equations and their boundary conditions are initially cast into dimensionless forms by similarity transformation. The resulting system of equations is then solved numerically using fourth order Runge-Kutta More >

  • Open Access

    PROCEEDINGS

    Theoretical and Numerical Research on the Vertical Impact of a Slender Flat-Ended 316 Stainless Steel Rod

    Yifan Wang1, Tao Wang1,*, Xuan Ye2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010058

    Abstract Rod occasionally drops and impacts on a substrate, which can induce drastic vibration within the rod. Acquaintance with the mechanical and motional responses helps to evaluate the structure. In this study, the vertical impact of a slender flat-ended 316 stainless steel rod on a rigid flat was investigated. The rod was basically elastic despite minute plastic dissipation, which accounted for around 0.11% of the total energy, probably due to the convergence of the incident stress waves. Theoretical models describing the longitudinal vibration of the rod was established respectively using the contact-impact force and the displacement… More >

  • Open Access

    ARTICLE

    INFLUENCE OF CONVECTIVE BOUNDARY CONDITION ON NONLINEAR THERMAL CONVECTION FLOW OF A MICROPOLAR FLUID SATURATED POROUS MEDIUM WITH HOMOGENEOUS-HETEROGENEOUS REACTIONS

    Chetteti RamReddya,†, Teegala Pradeepaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.6

    Abstract A numerical approach has been used to analyze the effects of homogeneous-heterogeneous reaction and nonlinear density temperature variation over a vertical plate in an incompressible micropolar fluid flow saturated Darcy porous medium. In addition, convective boundary condition is incorporated in a micropolar fluid model. The similarity representation for the set of partial differential equations is attained by applying Lie group transformations. The resulting non-dimensional equations are worked out numerically by spectral quasi-linearization method. Less temperature and wall couple stress coefficient, but more velocity, skin friction, species concentration, and heat transfer rate are noticed by enhancing More >

  • Open Access

    ARTICLE

    MICROPOLAR FLUID FLOW OVER A NONLINEAR STRETCHING CONVECTIVELY HEATED VERTICAL SURFACE IN THE PRESENCE OF CATTANEO-CHRISTOV HEAT FLUX AND VISCOUS DISSIPATION

    Machireddy Gnaneswara Reddya,*, Gorla Rama Subba Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.20

    Abstract The objective of the present communication is to study the problem of micropolar fluid flow with temperature dependent thermal conductivity over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model and Joule heating effects are properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are More >

  • Open Access

    ARTICLE

    NONLINEAR CONVECTIVE TRANSPORT ALONG AN INCLINED PLATE IN NON-DARCY POROUS MEDIUM SATURATED BY A MICROPOLAR FLUID WITH CONVECTIVE BOUNDARY CONDITION

    Ch. RamReddy , P. Naveen, D. Srinivasacharya

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.35

    Abstract The role of nonlinear variation of density with temperature (NDT) and concentration (NDC) on the free convective flow of non-Darcy micropolar fluid over an inclined plate has been studied for the first time. In addition, the modified form of thermal slip and isothermal condition is utilized to address heat transfer phenomena in nuclear plants, textile drying, and heat exchangers, etc. The respective partial differential equations and boundary conditions are cast into a sequence of the ordinary differential equation by the local non-similarity technique. The remodeled equations are simplified numerically by applying a successive linearization method More >

Displaying 1-10 on page 1 of 83. Per Page