Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (132)
  • Open Access

    ARTICLE

    Effect of Sheath Modeling on Unbonded Post-Tensioned Concrete under Blast Loads

    Hyeon-Sik Choi1, Min Kyu Kim1, Jiuk Shin2, Thomas H.-K. Kang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074029 - 29 January 2026

    Abstract Unbonded post-tensioned (PT) concrete systems are widely used in safety-critical structures, yet modeling practices for prestress implementation and tendon-concrete interaction remain inconsistent. This study investigates the effects of sheath (duct) implementation and confinement assumptions through nonlinear finite element analysis. Four modeling cases were defined, consisting of an explicit sheath without tendon-concrete confinement (S) and three no-sheath variants with different confinement levels (X, N, A). One-way beams and two-way panels were analyzed, and panel blast responses were validated against experimental results. In both beams and panels, average initial stress levels were similar across models, through local More >

  • Open Access

    ARTICLE

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

    Francisco Daniel García1,2, Solange Nicole Aigner1,2, Natalia Raffaeli3, Antonio José Barotto3, Eleana Spavento3, Mariano Martín Escobar1,4, Marcela Angela Mansilla1,4, Alejandro Bacigalupe1,4,*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0181 - 23 January 2026

    Abstract This study explores the use of black soldier fly larvae protein as a bio-based adhesive to produce particleboards from sugarcane bagasse. A comprehensive evaluation was conducted, including rheological characterization of the adhesive and physical–mechanical testing of the panels according to European standards. The black soldier fly larvae-based adhesive exhibited gel-like viscoelastic behavior, rapid partial structural recovery after shear, and favorable application properties. Particleboards manufactured with this adhesive and sugarcane bagasse achieved promising mechanical performance, with modulus of rupture and modulus of elasticity values of 30.2 and 3500 MPa, respectively. Internal bond strength exceeded 0.4 MPa,… More > Graphic Abstract

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

  • Open Access

    ARTICLE

    Evaluation of Strip-Processed Cotton Stalks as a Raw Material for Structural Panels

    Aadarsha Lamichhane1, Arun Kuttoor Vasudevan1, Ethan Dean1, Mostafa Mohammadabadi1,*, Kevin Ragon1, Ardeshir Adeli2

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0146 - 23 January 2026

    Abstract This study explores a novel method for processing cotton stalks—an abundant agricultural byproduct—into long strips that serve as sustainable raw material for engineered bio-based panels. To evaluate the effect of raw material morphology on panel’s performance, two types of cotton stalk-based panels were developed: one using long strips, maintaining fiber continuity, and the other using ground particles, representing conventional processing. A wood strand-based panel made from commercial southern yellow pine strands served as the control. All panels were bonded using phenol-formaldehyde resin and hot-pressed to a target thickness of 12.7 mm and density of 640 kg/m3.… More >

  • Open Access

    ARTICLE

    A Temperature-Indexed Concrete Damage Plasticity Model Incorporating Bond-Slip Mechanism for Thermo-Mechanical Analysis of Reinforced Concrete Structures

    Wu Feng1,2,*, Tengku Anita Raja Hussin1, Xu Yang3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071664 - 08 January 2026

    Abstract This study investigates the thermo–mechanical behavior of C40 concrete and reinforced concrete subjected to elevated temperatures up to 700°C by integrating experimental testing and advanced numerical modeling. A temperature-indexed Concrete Damage Plasticity (CDP) framework incorporating bond–slip effects was developed in Abaqus to capture both global stress–strain responses and localized damage evolution. Uniaxial compression tests on thermally exposed cylinders provided residual strength data and failure observations for model calibration and validation. Results demonstrated a distinct two-stage degradation regime: moderate stiffness and strength reduction up to ~400°C, followed by sharp deterioration beyond 500°C–600°C, with residual capacity at… More >

  • Open Access

    PROCEEDINGS

    Rib Design of Fiber-Reinforced Polymer Reinforcement Bars and Study on Stick-Slip Friction at the Concrete Interface

    Quanzhou Yao*, Wenxin Chang, Lin Ye

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011903

    Abstract With the rapid advancement of global infrastructure development and the deepening of sustainable development principles, fiber-reinforced polymer (FRP) reinforcement bars have emerged as an innovative alternative to traditional steel reinforcement due to their lightweight, high-strength, corrosion resistance, and fatigue-resistant properties. However, the practical engineering application of FRP bars in concrete structures still faces critical challenges in optimizing the interfacial bond performance between the reinforcement and concrete. This study addresses the scientific bottleneck in rib height design for FRP bars by systematically investigating the evolution mechanism of fiber strain during the rib-forming process through theoretical analysis… More >

  • Open Access

    PROCEEDINGS

    Transition from Crack-Type to Spall-Type Failure Mode in Interfacial Debonding Under Tensile Loading

    Meng Wang1, Jay Fineberg2, Alan Needleman3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011000

    Abstract Brittle materials fail by means of rapid cracks. At their tips, tensile cracks dissipate elastic energy stored in the surrounding material to create newly fractured surfaces, precisely maintaining 'energy balance' by exactly equating the energy flux with dissipation. Using energy balance, fracture mechanics perfectly describes crack motions; accelerating from nucleation to their maximal speed of cR, the Rayleigh wave speed. A tensile crack speed greater than cR is generally considered impossible [1]. Recently, a new mode of tensile crack propagation faster than cR that is not incorporated in classical fracture mechanics has been predicted in… More >

  • Open Access

    PROCEEDINGS

    Influence of Resin Matrix Rigidity on the Ballistic Performance of PBO and Aramid Fiber Reinforced Composites

    Jia Liu, Yuwu Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011553

    Abstract The rigidity of the resin matrix is a critical factor affecting the impact resistance of composites [1]. However, the intrinsic relationship between resin matrix rigidity and ballistic performance remains insufficiently understood. To reveal the influence mechanisms of resin matrix rigidity on ballistic performance, this study compares the ballistic limits of PBO-140, PBO-200, Aramid III, and Aramid II fiber reinforced composites with resin matrices of different rigidities (epoxy resin, PX90, and PX30) through ballistic impact tests. The experimental results show that, the ballistic limit of composites with PX90 resin is higher than that of composites with… More >

  • Open Access

    PROCEEDINGS

    External Field Induced High Speed Sintering of Polyurethane Covalent Adaptable Network

    Lingyao Zhou, Ling Zhang, Qifan Zhao, Zhanhua Wang, Xili Lu, Guoxia Fei, Lirong He*, Hesheng Xia*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012861

    Abstract Powder based high speed sintering (HSS) improves the printing efficiency compared to SLS printing. The shortened layer time for HSS requires quick melting and solidification of powders, which is a big challenge for traditional printing powders materials, especially the viscous elastomers. Herein, a dynamic cross-linked polyurethane containing Diels-Alder bonds (PUDA) was synthesized at kilo scale and used for HSS. The incorporation of dynamic DA bonds into PU enables the dissociation of the polymer chain under IR light heating, and will lead to fast relaxation, diffusion and dis/re-entanglement, addressing the problem of incomplete sintering and weak… More >

  • Open Access

    ARTICLE

    Strengthening Efficacy of External FRP Laminates on Aged Prestressed Beams with Unbonded Strands

    Phuong Phan-Vu*, Thanh Q. Nguyen, Phuoc Trong Nguyen

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1111-1125, 2025, DOI:10.32604/sdhm.2025.070179 - 05 September 2025

    Abstract As prestressed concrete (PC) structures age, long-term effects, e.g., creep, shrinkage, and prestress losses, compromise their structural performance. Strengthening these aged PC beams has become a crucial matter. One effective solution is to use externally bonded fiber-reinforced polymer (FRP) sheets; however, limited research has been done on aged PC beams using the FRP, especially for beams with unbonded prestressing strands (UPC beams). Therefore, this research investigates the flexural strengthening efficacy of external FRP sheets on aged UPC beams with unbonded tendons. Aging minimally affected the failure modes of UPC beams, with nonstrengthened beams showing flexural… More >

  • Open Access

    ARTICLE

    Finite Element Analysis of Inclusion Stiffness and Interfacial Debonding on the Elastic Modulus and Strength of Rubberized Mortar

    Cristian Martínez-Fuentes1, Pedro Pesante2,*, Karin Saavedra3, Paul Oumaziz4

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 581-595, 2025, DOI:10.32604/cmc.2025.065746 - 29 August 2025

    Abstract Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties. The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete. This study employs finite element simulations to investigate the elastic properties of rubberized mortar (RuM), considering the influence of inclusion stiffness and interfacial debonding. Different homogenization schemes, including Voigt, Reuss, and mean-field approaches, are implemented using DIGIMAT and ANSYS. Furthermore, the influence of the interfacial transition zone (ITZ) between mortar… More >

Displaying 1-10 on page 1 of 132. Per Page