Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (108)
  • Open Access

    ARTICLE

    An Elastoplastic Fracture Model Based on Bond-Based Peridynamics

    Liping Zu1, Yaxun Liu1, Haoran Zhang1, Lisheng Liu2,*, Xin Lai2,*, Hai Mei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2349-2371, 2024, DOI:10.32604/cmes.2024.050488

    Abstract Fracture in ductile materials often occurs in conjunction with plastic deformation. However, in the bond-based peridynamic (BB-PD) theory, the classic mechanical stress is not defined inherently. This makes it difficult to describe plasticity directly using the classical plastic theory. To address the above issue, a unified bond-based peridynamics model was proposed as an effective tool to solve elastoplastic fracture problems. Compared to the existing models, the proposed model directly describes the elastoplastic theory at the bond level without the need for additional calculation means. The results obtained in the context of this model are shown More >

  • Open Access

    ARTICLE

    Properties of Bark Particleboard Bonded with Demethylated Lignin Adhesives Derived from Leucaena leucocephala Bark

    Rafidah Md Salim1,2,*, Jahimin Asik2, Mohd Sani Sarjadi2

    Journal of Renewable Materials, Vol.12, No.4, pp. 737-769, 2024, DOI:10.32604/jrm.2024.045695

    Abstract Lignin extraction from bark can maximize the utilization of biomass waste, offer cost-effectiveness, and promote environmental friendliness when employed as an adhesive material in bark particleboard production. Particles of fine (0.2 to 1.0 mm), medium (1.0 to 2.5 mm), and coarse (2.5 to 12.0 mm) sizes, derived from the bark of Leucaena leucocephala, were hot-pressed using a heating plate at 175°C for 7 min to create single-layer particleboards measuring 320 mm × 320 mm × 10 mm, targeting a density of 700 kg/m. Subsequently, the samples were trimmed and conditioned at 20°C and 65% relative humidity.… More > Graphic Abstract

    Properties of Bark Particleboard Bonded with Demethylated Lignin Adhesives Derived from <i>Leucaena leucocephala</i> Bark

  • Open Access

    ARTICLE

    A Comprehensive Investigation on Shear Performance of Improved Perfobond Connector

    Caiping Huang*, Zihan Huang, Wenfeng You

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 299-320, 2024, DOI:10.32604/sdhm.2024.047850

    Abstract This paper presents an easily installed improved perfobond connector (PBL) designed to reduce the shear concentration of PBL. The improvement of PBL lies in changing the straight penetrating rebar to the Z-type penetrating rebar. To study the shear performance of improved PBL, two PBL test specimens which contain straight penetrating rebar and six improved PBL test specimens which contain Z-type penetrating rebars were designed and fabricated, and push-out tests of these eight test specimens were carried out to investigate and compare the shear behavior of PBL. Additionally, Finite Element Analysis (FEA) models of the PBL… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Pyridine-containing Epoxy: H-bonds Distribution and Thermomechanical Performances

    ZHAO JUNa, LIU AIQINa, ZHOU HONGa, LUO JUNb,*, AND LIU YUANb,*

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 29-42, 2020, DOI:10.32381/JPM.2020.37.1-2.3

    Abstract Heteroatoms (N, O, and F) and hydrogen groups are important elements for forming the H-bonds. It is well known that a large number of hydrogen groups are formed after curing reaction of epoxy. However, literatures about epoxy resins containing heteroaromatic ring and the H-bonds after cure reaction of the epoxy resins are seldom published. To bridge the gap, a kind of new epoxy monomer containing pyridine ring (EMP) has been synthesized in this work, andit is further cured by 4,4-diaminodiphenyl methane (DDM). The properties of cured EMP/ DDM are evaluated by DSC, DMA, and static More >

  • Open Access

    ARTICLE

    Chiral Copolymers of (R)-N-(1-Phenyl-Ethyl) Methacrylamide (R-NPEMAM) and 2-Hydroxy Ethyl Methacrylate (HEMA): Investigation of PhysicoChemical Behavior, Thermal Properties and Degradation Kinetics

    DIBYENDU S. BAG*, SHILPI TIWARI, AKANSHA DIXIT, KM. MEENU

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 105-123, 2023, DOI:10.32381/JPM.2023.40.1-2.9

    Abstract In this paper, we report the microstructural investigation and influence of H-bonding on the thermal behavior e.g., glass transition (Tg ) and thermal degradation of chiral copolymers of (R)- N-(1-phenyl-ethyl) methacrylamide (R-NPEMAM) and 2-hydroxy ethyl methacrylate (HEMA). The Tg increases with the increase of chiral unit content in the copolymers and then attains optimum at around 25 mole % of chiral content. Thereafter it decreases with the increase of chiral content. The effect of copolymer composition and secondary interaction associated with the Hbonding on the thermal properties of these copolymers was also studied. Secondary interaction, specifically More >

  • Open Access

    ARTICLE

    Covalent Bond Based Android Malware Detection Using Permission and System Call Pairs

    Rahul Gupta1, Kapil Sharma1,*, R. K. Garg2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4283-4301, 2024, DOI:10.32604/cmc.2024.046890

    Abstract The prevalence of smartphones is deeply embedded in modern society, impacting various aspects of our lives. Their versatility and functionalities have fundamentally changed how we communicate, work, seek entertainment, and access information. Among the many smartphones available, those operating on the Android platform dominate, being the most widely used type. This widespread adoption of the Android OS has significantly contributed to increased malware attacks targeting the Android ecosystem in recent years. Therefore, there is an urgent need to develop new methods for detecting Android malware. The literature contains numerous works related to Android malware detection.… More >

  • Open Access

    ARTICLE

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

    Shuai Chen1, Yinwei Ma2, Zhongshu Wang2, Zongmei Xu3, Song Zhang1, Jianle Li1, Hao Xu1, Zhanjun Wu1,*

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 125-141, 2024, DOI:10.32604/sdhm.2024.042594

    Abstract The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life. To this end, distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages, such as lightweight and ease of embedding. However, identifying the precise location of damage from the optical fiber signals remains a critical challenge. In this paper, a novel approach which namely Modified Sliding Window Principal Component Analysis (MSWPCA) was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors. The proposed method More > Graphic Abstract

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

  • Open Access

    ARTICLE

    Bond-Slip Behavior of Steel Bar and Recycled Steel Fibre-Reinforced Concrete

    Ismail Shah1,2, Jing Li1,3,4,*, Nauman Khan5, Hamad R. Almujibah6, Muhammad Mudassar Rehman2, Ali Raza7, Yun Peng3,4

    Journal of Renewable Materials, Vol.12, No.1, pp. 167-186, 2024, DOI:10.32604/jrm.2023.031503

    Abstract Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability. It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics. This study examines the key influencing factors that affect the behavior of this material, such as the steel fiber volume ratio, recycled aggregate replacement rate, concrete strength grade, anchorage length, and stirrup constraint. The study investigates the bond failure morphology, bond-slip, and bond strength constitutive relationship of steel fiber recycled concrete. The results show that the addition of steel fibers at 0.5%,… More >

  • Open Access

    PROCEEDINGS

    Fragile Points Method for Modeling Complex Structural Failure

    Mingjing Li1,*, Leiting Dong1, Satya N. Atluri2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09689

    Abstract The Fragile Points Method (FPM) is a discontinuous meshless method based on the Galerkin weak form [1]. In the FPM, the problem domain is discretized by spatial points and subdomains, and the displacement trial function of each subdomain is derived based on the points within the support domain. For this reason, the FPM doesn’t suffer from the mesh distortion and is suitable to model complex structural deformations. Furthermore, similar to the discontinuous Galerkin finite element method, the displacement trial functions used in the FPM is piece-wise continuous, and the numerical flux is introduced across each… More >

  • Open Access

    PROCEEDINGS

    Nanomechanics of Incipient Kink Defects Formed in Nanocellulose

    Rongzhuang Song1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09608

    Abstract Kink defects in nanocellulose are ubiquitous yet associated questions remain open regarding the unclear microstructure-mechanical property relationship. Various kink patterns without molecular-scale resolution result in bemusements of how nanocellulose forms different kinks and what the fundamental mechanisms of reversible and irreversible kinks are. In our atomic force microscopy images of mechanically treated cellulose nanofibrils, bent nanofibrils usually exhibit small curvatures while kinked nanofibrils feature sharp bends, in which kinks are conspicuous due to their promiscuous configurations. To identify the nanomechanics of incipient kink defects formed in nanocellulose, molecular dynamics simulations of cellulose nanocrystals (CNCs) under… More >

Displaying 1-10 on page 1 of 108. Per Page