Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    MECHANISMS AND APPLICATIONS OF CATALYTIC COMBUSTION OF NATURAL GAS*

    Shihong Zhang#, Ning Li, Zhihua Wang

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-5, 2011, DOI:10.5098/hmt.v2.3.3004

    Abstract This article discussed the thermal efficiency, stability and pollutant emissions characteristics of the combustion of lean natural gas-air mixtures in Pd metal based honeycomb monoliths by means of experiments on a practical burner V. The chemistry at work in the monoliths was then investigated by the stagnation point flow reactor( SPFR), a fundamental experimental reactor. It was found that catalytic combustion inhibited the extent of gas-phase oxidation and increased the surface temperature of homogeneous ignition. According to the applications of catalytic combustion in the condenser boiler, the data of catalytic combustion condenser boiler V were measured at atmospheric temperature and… More >

  • Open Access

    ARTICLE

    ANALYSIS OF COMBUSTION MECHANISM AND COMBUSTION OPTIMIZATION OF A 300MW PULVERIZED COAL BOILER

    Xiaoqian Maa , Mo Yanga,*, Yuwen Zhangb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.36

    Abstract Combustion mechanism of a 300 MW pulverized coal boiler is analyzed and the optimization of the performance of the boiler is carried out. The flow field, temperature field, devolatilization, char combustion and CO generation in the boiler furnace under actual condition is obtained by using Fluent. Three methods to improve the efficiency of boiler combustion are proposed based on the pulverized coal combustion mechanism; their feasibilities are verified through numerical simulation and analysis. The three proposed methods to increase the combustion efficiency may give theoretical reference for air arrangement and combustion optimization of the same type of burners. More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF COMBUSTION IN 300 MW TANGENTIALLY FIRED PULVERIZED HIGH-ALKALI COAL BOILER ON UNDERLOAD OPERATION

    Xuehui Jinga,* , Wei Lia, Zhaoyu Lia , Zhiyun Wangb

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-4, 2023, DOI:10.5098/hmt.20.19

    Abstract This paper numerically simulates the combustion in a 300MW tangentially fired pulverized high-alkali coal boiler under low-load conditions. The combustion process, temperature distribution and the thermal load in the furnace at different height are analyzed under three different load conditions, which are 30%, 45% and 60% of full load. The temperature distribution and the variation of NOx concentration under different load conditions are investigated, as well. The results show that the combustion processes of pulverized high-alkali coal in the furnace are similar under different load conditions, but the positions of the fuel’s full combustion are related to the loads. With… More >

  • Open Access

    ARTICLE

    ANALYSIS OF POWER GENERATION PROCESS EXERGY EFFICIENCY OF LARGE CDQ WASTE HEAT BOILER UNDER THE BACKGROUND OF DOUBLE CARBON

    Tieming Wanga , Fuyong Sub,*

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-4, 2023, DOI:10.5098/hmt.20.12

    Abstract This paper analyzes the power generation technology of coke dry quenching (CDQ) waste heat boiler, and compares the exergy efficiency of medium temperature medium pressure boiler and high temperature high pressure boiler. The scheme of high temperature ultrahigh pressure primary intermediate reheat boiler to further improve the power generation efficiency of CDQ waste heat is put forward, and the exergy efficiency is analyzed. The bottleneck problem of further improving power generation efficiency by CDQ waste heat power generation and the exergy efficiency limit under the current process conditions are obtained. More >

  • Open Access

    ARTICLE

    An Efficient Method for Heat Recovery Process and Temperature Optimization

    Basim Kareem Naser1, Mohammed Dauwed2,*, Ahmed Alkhayyat3, Mustafa Musa Jaber4,5, Shahad Alyousif6,7, Mohammed Hasan Ali8

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1017-1031, 2023, DOI:10.32604/cmc.2023.033957

    Abstract Flue gas heat loss accounts for a significant component of the overall heat loss for coal-fired boilers in power plants. The flue gas absorbs more heat as the exhaust gas temperature rises, which reduces boiler efficiency and raises coal consumption. Additionally, if the exhaust gas temperature is too high, a lot of water must be used to cool the flue gas for the wet flue gas desulfurization system to function well, which has an impact on the power plant’s ability to operate profitably. It is consequently vital to take steps to lower exhaust gas temperatures in order to increase boiler… More >

  • Open Access

    ARTICLE

    Investigation of the Effects of a Large Percentage of Dried Sludge on the Operation of a Coal-Fired Boiler

    Jialin Tong1,2, Yan Zhang2, Ruikang Wu1, Xiaojuan Qi1, Xuemin Ye2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 1027-1041, 2023, DOI:10.32604/fdmp.2022.022303

    Abstract A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges. The influence of the over-fired air (OFA) coefficient is examined and the impact of the blending ratio on the boiler operation is explored. The results show that for low blending ratios, a slight increase in the blending ratio can improve the combustion of bituminite, whereas a further increase leads to the deterioration of the combustion of blended fuels and thus reduces the boiler efficiency. Enhancing the supporting capability of the… More > Graphic Abstract

    Investigation of the Effects of a Large Percentage of Dried Sludge on the Operation of a Coal-Fired Boiler

  • Open Access

    ARTICLE

    Comparison of Ashes Produced in a Biomass Moving Grate Boiler by Wood Chips and Sewage Sludge

    Baraket Nada1,2,3,*, Brandelet Benoit1, Trouvé Gwenaëlle2, Rogaume Yann1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1419-1425, 2022, DOI:10.32604/fdmp.2022.021753

    Abstract One option to fight global warming is to convert our use of fossil energy into renewables such as biomass energy. However, the forest preservation and the quality of the ambient air are also two major issues. Therefore, the use of biomass waste without any supplementary emissions could represent a part of the solution. In this study, two fuels were considered for a 200 kW moving grate boiler. A multicyclone and a bag filter were fitted on the boiler. The first fuel consisted of classical wood chips whereas the second was a mixture of wood chips with sewage sludge. This second… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Retrofit Scheme of a Boiler Tail Flue

    Yukun Lv, Jiaxi Yang, Jiawen Wang*, Runcheng Zhang, Shuang Yang, Wentao Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1203-1217, 2020, DOI:10.32604/fdmp.2020.010489

    Abstract Aiming at the problem that the total pressure loss of the flue of the electric precipitator of the 350 MW unit of a power plant to the inlet of the draft fan is too large, the numerical simulation software Fluent and the standard k-ε model was used to simulate the flue, the results show that the main part of the flue mean total pressure loss is derived from the confluence header and elbow. In order to reduce the loss and consider the cost of transformation, the concept of twodimensional feature surface is established, gradually proposed three sets of flue transformation… More >

  • Open Access

    ARTICLE

    The Elaboration of Flow Resistance Model for a Bag Filter Serving a 200 MW Power Plant

    Yukun Lv, Jiaxi Yang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 827-835, 2020, DOI:10.32604/fdmp.2020.010343

    Abstract On the basis of a macro flow resistance method and the Darcy Theory, a mathematical model is elaborated to characterize the flow resistance of a bag filter serving a coal-fired power plant. The development of the theoretical model is supported through acquisition of relevant data obtained by scanning the micro structure of the bag filter by means of an electron microscope. The influence of the running time and boiler load on the flow resistance and the impact of the flow resistance on the efficiency of the induced draft fan are analyzed by comparing the results of on-site operation tests. We… More >

  • Open Access

    ARTICLE

    Improved Teaching-Learning-Based Optimization Algorithm for Modeling NOX Emissions of a Boiler

    Xia Li1,2, Peifeng Niu1,*, Jianping Liu2, Qing Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.1, pp. 29-57, 2018, DOI:10.31614/cmes.2018.04020

    Abstract An improved teaching-learning-based optimization (I-TLBO) algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception (PELM), and a well-generalized I-TLBO-PELM model is obtained to build the model of NOX emissions of a boiler. In the I-TLBO algorithm, there are four major highlights. Firstly, a quantum initialized population by using the qubits on Bloch sphere replaces a randomly initialized population. Secondly, two kinds of angles in Bloch sphere are generated by using cube chaos mapping. Thirdly, an adaptive control parameter is added into the teacher phase to speed up the convergent speed. And then, according to… More >

Displaying 1-10 on page 1 of 10. Per Page