Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Novel Design of UWB Jeans Based Textile Antenna for Body-Centric Communications

    Mohammad Monirujjaman Khan1,*, Bright Yeboah-Akowuah2, Kaisarul Islam1, Eric Tutu Tchao2, Sumanta Bhattacharyya3, Rajesh Dey4, Mehedi Masud5, Fahad Alraddady6

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1079-1093, 2022, DOI:10.32604/csse.2022.022313 - 08 February 2022

    Abstract This research presents an ultra-wideband (UWB) textile antenna design for body-centric applications. The antenna is printed on a 1 mm thick denim substrate with a 1.7 relative permittivity. The jeans substrate is sandwiched between a partial ground plane and a radiating patch with a Q-shaped slot. The slotted radiating patch is placed above the substrate and measures 27.8 mm × 23.8 mm. In free space, the antenna covers the ultra-wideband spectrum designated by the Federal Communication Commission (FCC). Various parameters of the antenna design were changed for further performance evaluation. Depending on the operating frequency, the antenna's realized gain varied… More >

  • Open Access

    ARTICLE

    Novel Compact UWB Band Notch Antenna Design for Body-Centric Communications

    Sk Raziul Ahasan1, Kaisarul Islam1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Gurjot Singh Gaba3, Hesham A. Alhumyani4

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 673-689, 2022, DOI:10.32604/csse.2022.019585 - 09 September 2021

    Abstract In this paper, a novel and compact ultra-wideband (UWB) antenna with band-notched characteristics for body-centric communication is examined and implemented. The shape of the designed antenna looks like a ‘swan’ with a slotted patch. The performance parameters of this antenna for both the free space and on-body scenario for body-centric communication are analyzed and investigated through the simulation process using Computer Simulation Technology (CST). This antenna can avoid the interference caused by Wireless Local Area Network (WLAN) (5.15–5.825 GHz) and Worldwide Interoperability for Microwave Access (WiMAX) (5.25–5.85 GHz) systems with a band notch because of… More >

  • Open Access

    ARTICLE

    Comparative Design and Study of A 60 GHz Antenna for Body-Centric Wireless Communications

    Kaisarul Islam1, Tabia Hossain1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Roobaea Alroobaea2

    Computer Systems Science and Engineering, Vol.37, No.1, pp. 19-32, 2021, DOI:10.32604/csse.2021.015528 - 05 February 2021

    Abstract In this paper performance of three different designs of a 60 GHz high gain antenna for body-centric communication has been evaluated. The basic structure of the antenna is a slotted patch consisting of a rectangular ring radiator with passive radiators inside. The variation of the design was done by changing the shape of these passive radiators. For free space performance, two types of excitations were used—waveguide port and a coaxial probe. The coaxial probe significantly improved both the bandwidth and radiation efficiency. The center frequency of all the designs was close to 60 GHz with… More >

Displaying 1-10 on page 1 of 3. Per Page