Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    MayGAN: Mayfly Optimization with Generative Adversarial Network-Based Deep Learning Method to Classify Leukemia Form Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2039-2058, 2023, DOI:10.32604/csse.2023.036985 - 09 February 2023

    Abstract Leukemia, often called blood cancer, is a disease that primarily affects white blood cells (WBCs), which harms a person’s tissues and plasma. This condition may be fatal when if it is not diagnosed and recognized at an early stage. The physical technique and lab procedures for Leukaemia identification are considered time-consuming. It is crucial to use a quick and unexpected way to identify different forms of Leukaemia. Timely screening of the morphologies of immature cells is essential for reducing the severity of the disease and reducing the number of people who require treatment. Various deep-learning… More >

  • Open Access

    ARTICLE

    Histogram-Based Decision Support System for Extraction and Classification of Leukemia in Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1879-1900, 2023, DOI:10.32604/csse.2023.034658 - 09 February 2023

    Abstract An abnormality that develops in white blood cells is called leukemia. The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery. Prior training is necessary to complete the morphological examination of the blood smear for leukemia diagnosis. This paper proposes a Histogram Threshold Segmentation Classifier (HTsC) for a decision support system. The proposed HTsC is evaluated based on the color and brightness variation in the dataset of blood smear images. Arithmetic operations are used to crop the nucleus based on automated approximation. White Blood Cell (WBC) segmentation is calculated… More >

  • Open Access

    ARTICLE

    Qualitative Abnormalities of Peripheral Blood Smear Images Using Deep Learning Techniques

    G. Arutperumjothi1,*, K. Suganya Devi2, C. Rani3, P. Srinivasan4

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1069-1086, 2023, DOI:10.32604/iasc.2023.028423 - 06 June 2022

    Abstract In recent years, Peripheral blood smear is a generic analysis to assess the person’s health status. Manual testing of Peripheral blood smear images are difficult, time-consuming and is subject to human intervention and visual error. This method encouraged for researchers to present algorithms and techniques to perform the peripheral blood smear analysis with the help of computer-assisted and decision-making techniques. Existing CAD based methods are lacks in attaining the accurate detection of abnormalities present in the images. In order to mitigate this issue Deep Convolution Neural Network (DCNN) based automatic classification technique is introduced with… More >

  • Open Access

    ARTICLE

    Intelligent Deep Transfer Learning Based Malaria Parasite Detection and Classification Model Using Biomedical Image

    Ahmad Alassaf, Mohamed Yacin Sikkandar*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5273-5285, 2022, DOI:10.32604/cmc.2022.025577 - 21 April 2022

    Abstract Malaria is a severe disease caused by Plasmodium parasites, which can be detected through blood smear images. The early identification of the disease can effectively reduce the severity rate. Deep learning (DL) models can be widely employed to analyze biomedical images, thereby minimizing the misclassification rate. With this objective, this study developed an intelligent deep-transfer-learning-based malaria parasite detection and classification (IDTL-MPDC) model on blood smear images. The proposed IDTL-MPDC technique aims to effectively determine the presence of malarial parasites in blood smear images. In addition, the IDTL-MPDC technique derives median filtering (MF) as a pre-processing… More >

  • Open Access

    ARTICLE

    An Intelligent Classification System for Trophozoite Stages in Malaria Species

    Siti Nurul Aqmariah Mohd Kanafiah1,*, Mohd Yusoff Mashor1, Zeehaida Mohamed2, Yap Chun Way1, Shazmin Aniza Abdul Shukor1, Yessi Jusman3

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 687-697, 2022, DOI:10.32604/iasc.2022.024361 - 15 April 2022

    Abstract Malaria is categorised as a dangerous disease that can cause fatal in many countries. Therefore, early detection of malaria is essential to get rapid treatment. The malaria detection process is usually carried out with a 100x magnification of thin blood smear using microscope observation. However, the microbiologist required a long time to identify malaria types before applying any proper treatment to the patient. It also has difficulty to differentiate the species in trophozoite stages because of similar characteristics between species. To overcome these problems, a computer-aided diagnosis system is proposed to classify trophozoite stages of PlasmodiumMore >

  • Open Access

    Malaria Blood Smear Classification Using Deep Learning and Best Features Selection

    Talha Imran1, Muhammad Attique Khan2, Muhammad Sharif1, Usman Tariq3, Yu-Dong Zhang4, Yunyoung Nam5,*, Yunja Nam5, Byeong-Gwon Kang5

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1875-1891, 2022, DOI:10.32604/cmc.2022.018946 - 07 September 2021

    Abstract Malaria is a critical health condition that affects both sultry and frigid region worldwide, giving rise to millions of cases of disease and thousands of deaths over the years. Malaria is caused by parasites that enter the human red blood cells, grow there, and damage them over time. Therefore, it is diagnosed by a detailed examination of blood cells under the microscope. This is the most extensively used malaria diagnosis technique, but it yields limited and unreliable results due to the manual human involvement. In this work, an automated malaria blood smear classification model is More >

  • Open Access

    ARTICLE

    Imperative Dynamic Routing Between Capsules Network for Malaria Classification

    G. Madhu1,*, A. Govardhan2, B. Sunil Srinivas3, Kshira Sagar Sahoo4, N. Z. Jhanjhi5, K. S. Vardhan1, B. Rohit6

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 903-919, 2021, DOI:10.32604/cmc.2021.016114 - 22 March 2021

    Abstract Malaria is a severe epidemic disease caused by Plasmodium falciparum. The parasite causes critical illness if persisted for longer durations and delay in precise treatment can lead to further complications. The automatic diagnostic model provides aid for medical practitioners to avail a fast and efficient diagnosis. Most of the existing work either utilizes a fully connected convolution neural network with successive pooling layers which causes loss of information in pixels. Further, convolutions can capture spatial invariances but, cannot capture rotational invariances. Hence to overcome these limitations, this research, develops an Imperative Dynamic routing mechanism with fully… More >

Displaying 1-10 on page 1 of 7. Per Page