Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol) Blend Bioplastics

    Yodthong Baimark*, Theeraphol Phromsopha

    Journal of Renewable Materials, Vol.11, No.4, pp. 1881-1894, 2023, DOI:10.32604/jrm.2023.025400 - 01 December 2022

    Abstract A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA) block copolymer has great potential for use as a flexible bioplastic. Highly flexible bioplastics are required for flexible packaging applications. In this work, a PEG was incorporated into block copolymer as a plasticizer by solvent casting. PLLA-PEG-PLLA/ PEG blends with different blend ratios were prepared, and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends. The results indicated that the PEG was an effective plasticizer for the block copolymer. The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA More > Graphic Abstract

    Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol) Blend Bioplastics

  • Open Access

    REVIEW

    A Literature Review on Sustainability of Bio-Based and Biodegradable Plastics: Challenges and Opportunities

    Taofeeq D. Moshood, Gusman Nawanir, Fatimah Mahmud*, Fazeeda Mohamad, Mohd Hanafiah Ahmad, Airin AbdulGhani

    Energy Engineering, Vol.119, No.4, pp. 1611-1647, 2022, DOI:10.32604/ee.2022.019028 - 23 May 2022

    Abstract This study examines the literature on bio-based and biodegradable plastics published between 2000 and 2021 and provides insights and research suggestions for the future. The study gathers data from the Scopus and ISI Web of Science databases, then picks 1042 publications objectively and analyses their metadata. Furthermore, 144 papers from the Web of Science are analysed to present insights and classifications of the literature based on content analyses, including assessment/evaluation of the sustainability of bio-based and biodegradable Plastics, sustainability of biodegradable Plastics, and factors driving the uptake of biodegradable plastics. The study finds that most… More >

  • Open Access

    ARTICLE

    3D Printing of Polylactic Acid Bioplastic–Carbon Fibres and Twisted Kevlar Composites Through Coextrusion Using Fused Deposition Modeling

    J. Y. Tey*, W. H. Yeo, Y. J. King, W. O. Ding

    Journal of Renewable Materials, Vol.8, No.12, pp. 1671-1680, 2020, DOI:10.32604/jrm.2020.011870 - 12 November 2020

    Abstract Polylactic acid (PLA) bioplastic is a common material used in Fused Deposition Modeling (FDM) 3D printing. It is biodegradable and environmentally friendly biopolymer which made out of corn. However, it exhibits weak mechanical properties which reduced its usability as a functional prototype in a real-world application. In the present study, two PLA composites are created through coextruded with 3K carbon fibres and twisted Kevlar string (as core fibre) to form a fibre reinforced parts (FRP). The mechanical strength of printed parts was examined using ASTM D638 standard with a strain rate of 1 mm/min. It… More >

  • Open Access

    ARTICLE

    Blend of Polyhydroxyalkanoates Synthesized By Lipase Positive Bacteria From Plant Oils

    Nasir Javaid, Rida Batool, Nazia Jamil*

    Journal of Renewable Materials, Vol.7, No.5, pp. 463-476, 2019, DOI:10.32604/jrm.2019.00023

    Abstract A total of 5 biochemically characterized lipase positive bacterial strains were screened for Polyhydroxyalkanoates (PHA) production by Nile blue staining and confirmation was done by Sudan Black B. PHA production ability for all strains was optimized followed by time profiling calculation and comparison via using glucose and two plant oils i.e., canola and mustard oil. Quantitative analysis showed that glucose can serve as a carbon source for maximum biomass (2.5 g/L CDW for strain 5) and PHA production (70.3% for strain 2). PHA produced by strain 2 was further analyzed for its chemical composition and… More >

  • Open Access

    ARTICLE

    Sustainable Materials Based on Cellulose from Food Sector Agro-Wastes

    T. Côto1, I. Moura1, A. de Sá1,*, C. Vilarinho2, A. V. Machado1

    Journal of Renewable Materials, Vol.6, No.7, pp. 688-696, 2018, DOI:10.32604/JRM.2018.00006

    Abstract Biopolymers exhibit unique properties and can be produced from plants’ and crops’ wastes. Cellulose has been used for the production of sustainable materials, nevertheless due to the difficulty inherent to its extraction, several methods have been studied in order to optimize the process. Therefore, this paper reports the extraction of natural polymers from food sector agro-food wastes, including cellulose, following a green chemistry aproach. The cellulose extracted from pumpkin peel was acetylated and dispersed in a polylactic acid (PLA) matrix. The developed materials were characterized in terms of their structure, morphology and thermal stability. The More >

  • Open Access

    ARTICLE

    Production of Starch Films Using Propolis Nanoparticles as Novel Bioplasticizer

    Karolina Villalobos1, Hider Rojas1, Rodolfo González-Paz2, Daniel Brenes Granados2, Jeimmy González-Masís2, José Vega Baudrit1,3, Yendry Regina Corrales-Ureña1*

    Journal of Renewable Materials, Vol.5, No.3-4, pp. 189-198, 2017, DOI:10.7569/JRM.2017.634109

    Abstract Because starch is a biodegradable polymer with low cost and wide availability it is an attractive material for producing edible films for fruits. Films produced with pure starch have the disadvantage of being fragile. To overcome this issue, propolis nanoparticles were used as a novel plasticizer. Mechanical, thermal and morphological properties of the films containing 0.5, 1 and 3 wt.% propolis nanoparticles were evaluated. The best performance was obtained using 0.5 wt.% propolis, increasing the Young’s modulus and decreasing the glass transition temperature (Tg), showing their plasticizing effect. The results of scanning electron microscopy (SEM) More >

  • Open Access

    ARTICLE

    Development of Soy Protein Plastics Using Functional Chemistry for Short-Life Biodegradable Applications

    David Grewell*, Sean T. Carolan, Gowrishankar Srinivasan

    Journal of Renewable Materials, Vol.1, No.4, pp. 231-241, 2013, DOI:10.7569/JRM.2013.634120

    Abstract : Soy protein plastic formulations were developed through iterative experimental stages to produce waterstable, soy protein isolate (SPI)-based plastic resins. The protein polymer-based materials are glycerol and water plasticized resins that have been described as thermoplastics [1] by some researchers and have been described as materials that behave similar to thermoplastics upon application of heat and pressure [2]. Previous researchers have developed SPI plastic for various applications, all of which were adversely effected by water absorption. The formulations in this research included anhydride chemistries, such as maleic anhydride (MA), phthalic anhydride (PA), and bifunctional chemistries,… More >

Displaying 1-10 on page 1 of 7. Per Page