Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    ARTICLE

    Quantifying Roll Feel of a Car by Using a Musculoskeletal Mathematical Model

    Masaki Izawa1, Ryota Araki1, Tatsuro Suzuki1, Kaito Watanabe2, Kazuhito Misaji3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 493-507, 2019, DOI:10.31614/cmes.2019.04470

    Abstract Primary purpose of this research is to create a three-dimensional musculoskeletal mathematical model of a driver of a car using a motion capture system. The model is then used in an analysis of drive torque around joints and attached muscles as a vehicle travels in different travel modes and damping force settings to examine ‘burdens’ for the driver. Previous studies proposed a method of quantifying the degree of musculoskeletal load in simple human motion from the changes in drive torque around joints and attached muscles. However, examination of the level of burdens for the driver while driving using this method… More >

  • Open Access

    ARTICLE

    Effects of the Axial Variations of Porosity and Mineralization on the Elastic Properties of the Human Femoral Neck

    V. Sansalone1,∗, V. Bousson2, S. Naili1, C. Bergot2, F. Peyrin3, J.D. Laredo2, G. Haïat1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 387-410, 2012, DOI:10.3970/cmes.2012.087.387

    Abstract This paper investigates the effects of the heterogeneous distribution of the Haversian Porosity (HP) and Tissue Mineral Density (TMD) on the elastic coefficients of bone in the human femoral neck. A bone specimen from the inferior femoral neck was obtained from a patient undergoing standard hemiarthroplasty. The specimen was imaged using 3-D synchrotron micro-computed tomography (voxel size of 10.13 mm), leading to the determination of the anatomical distributions of HP and TMD. These experimental data were used to estimate the elastic coefficients of the bone using a three-step homogenization model based on continuum micromechanics: (i) At the tissue scale (characteristic… More >

  • Open Access

    ARTICLE

    Particle-Packaging Methods for Computational Modeling of Bones

    I. Pérez1, R. Roselló1, C. Recarey1, M. Cerrolaza2

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 183-200, 2011, DOI:10.3970/cmes.2011.079.183

    Abstract Modeling the geometry and behavior of human bones is of the most concern when dealing with bone remodelling (external and internal) and poroelastic analysis. Complex geometries are frequently found in the human skeleton as well as orthotropic behavior of bone tissue. Spongy bone has a completely different constitution as compared with compact bone, which adds another relevant consideration if we want to get reliable results in biomechanical analysis. The modeling of both compact and spongy human-bone tissue is carried out by using packaging-particle methods. The methods generate circles (2D domains) and spheres (3D domains) in a random manner for the… More >

  • Open Access

    ARTICLE

    Methodology for Numerical Simulation of Trabecular Bone Structures Mechanical Behavior

    M.A. Argenta1, A.P. Gebert2, E.S. Filho3, B.A. Felizari4, M.B. Hecke5

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 159-182, 2011, DOI:10.3970/cmes.2011.079.159

    Abstract Various methods in the literature proposesequations to calculate the stiffness as a function of density of bone tissue such as apparent density and ash density among others[Helgason, Perilli, Schileo, Taddei, Brynjolfsson and Viceconti, 2008]. Other ones present a value of an equivalent elasticity modulus, obtained by statistical adjustments of curves generated through mechanical compression tests over various specimens[Chevalier, Pahr, Allmer, Charlebois and Zysset, 2007; Cuppone, Seedhom, Berry and Ostell, 2004]. Bone tissue is a material withdifferent behaviors according to the scale of observation. It has a complex composite hierarchical structure, which is responsible for assign optimal mechanical properties. Its characteristics,… More >

  • Open Access

    ARTICLE

    Modelling of Interfaces in Biomechanics and Mechanobiology

    J. M. García-Aznar1,2, M. A. Pérez1,2, P. Moreo1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.3, pp. 271-302, 2009, DOI:10.3970/cmes.2009.048.271

    Abstract There are many interfaces between biological materials with a structural functionality, where their mechanical behaviour is crucial for their own performance. Advanced tools such as cohesive surface models are being used to simulate the failure and degradation of this kind of biological interactions. The goal of this paper, in a first step, is to present some cohesive surface models that include damage and repair in interfaces and its application to different biomechanical problems. Secondly, we discuss about the main challenges that we have to improve in the modelling of interfaces for a mechanobiological approach. More >

  • Open Access

    ARTICLE

    Three dimensional BEM and FEM stress analysis of the human tibia under pathological conditions

    C.M. Müller-Karger1, C.González2, M.H.Aliabadi3, M.Cerrolaza4

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 1-14, 2001, DOI:10.3970/cmes.2001.002.001

    Abstract In this paper, a three-dimensional Boundary Element model of the proximal tibia of the human knee is described and stresses and displacements in the tibial plateau under static loading are computed. The geometry is generated via three-dimensional reconstruction of Computerized Tomographies and Magnetic Resonance Imaging. Various models of different lengths from the tibia plateau are calculated. The BEM results are compared with a Finite Element model having the same geometry and tibia FE models available in the literature. Also reported are investigations of some pathological situations, including fractures. The results of the comparisons show that BEM is an efficient and… More >

Displaying 61-70 on page 7 of 66. Per Page