Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (102)
  • Open Access

    ARTICLE

    The Design and Implementation of a Biomechanics-Driven Structural Safety Monitoring System for Offshore Wind Power Step-Up Stations

    Ruigang Zhang1,*, Qihui Yan2, Jialiang Wang1, Hao Wang1, Jie Sun2, Junjiao Shi2

    Energy Engineering, Vol.122, No.9, pp. 3609-3624, 2025, DOI:10.32604/ee.2025.066880 - 26 August 2025

    Abstract As the core facility of offshore wind power systems, the structural safety of offshore booster stations directly impacts the stable operation of entire wind farms. With the global energy transition toward green and low-carbon goals, offshore wind power has emerged as a key renewable energy source, yet its booster stations face harsh marine environments, including persistent wave impacts, salt spray corrosion, and equipment-induced vibrations. Traditional monitoring methods relying on manual inspections and single-dimensional sensors suffer from critical limitations: low efficiency, poor real-time performance, and inability to capture millinewton-level stress fluctuations that signal early structural fatigue.… More >

  • Open Access

    ARTICLE

    A Novel Face-to-Skull Prediction Based on Face-to-Back Head Relation

    Tien-Tuan Dao1, Lan-Nhi Tran-Ngoc2,3, Trong-Pham Nguyen-Huu2,3, Khanh-Linh Dinh-Bui2,3, Nhat-Minh Nguyen2,3, Ngoc-Bich Le2,3, Tan-Nhu Nguyen2,3,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3345-3369, 2025, DOI:10.32604/cmc.2025.065279 - 03 July 2025

    Abstract Skull structures are important for biomechanical head simulations, but they are mostly reconstructed from medical images. These reconstruction methods harm the human body and have a long processing time. Currently, skull structures can be straightforwardly predicted from the head, but a full head shape must be available. Most scanning devices can only capture the face shape. Consequently, a method that can quickly predict the full skull structures from the face is necessary. In this study, a novel face-to-skull prediction procedure is introduced. Given a three-dimensional (3-D) face shape, a skull mesh could be predicted so… More >

  • Open Access

    ARTICLE

    Enhancing Emotional Expressiveness in Biomechanics Robotic Head: A Novel Fuzzy Approach for Robotic Facial Skin’s Actuators

    Nguyen Minh Trieu, Nguyen Truong Thinh*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 477-498, 2025, DOI:10.32604/cmes.2025.061339 - 11 April 2025

    Abstract In robotics and human-robot interaction, a robot’s capacity to express and react correctly to human emotions is essential. A significant aspect of the capability involves controlling the robotic facial skin actuators in a way that resonates with human emotions. This research focuses on human anthropometric theories to design and control robotic facial actuators, addressing the limitations of existing approaches in expressing emotions naturally and accurately. The facial landmarks are extracted to determine the anthropometric indicators for designing the robot head and is employed to the displacement of these points to calculate emotional values using Fuzzy… More >

  • Open Access

    ARTICLE

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

    Hsien-Tsung Lu1,2, Ching-Chi Hsu3,*, Qi-Quan Jian3, Wei-Ting Chen4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1883-1898, 2025, DOI:10.32604/cmes.2025.057675 - 27 January 2025

    Abstract Reconstruction of a traumatic distal femur defect remains a therapeutic challenge. Bone defect implants have been proposed to substitute the bone defect, and their biomechanical performances can be analyzed via a numerical approach. However, the material assumptions for past computational human femur simulations were mainly homogeneous. Thus, this study aimed to design and analyze scaffolds for reconstructing the distal femur defect using a patient-specific finite element modeling technique. A three-dimensional finite element model of the human femur with accurate geometry and material distribution was developed using the finite element method and material mapping technique. An… More > Graphic Abstract

    Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling

  • Open Access

    PROCEEDINGS

    Experimental and Computational Elucidation of Mechanical Forces on Cell Nucleus

    Miao Huang1, Maedeh Lotfi1, Heyang Wang4, Hayley Sussman5, Kevin Connell1, Quang Vo1, Malisa Sarntinoranont1, Hitomi Yamaguchi1, Juan Guan2, Xin Tang1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011130

    Abstract Mechanotransduction, i.e., living cells sense and transduce mechanical forces into intracellular biochemical signaling and gene expression, is ubiquitous across diverse organisms. Increasing evidence suggests that mechanotransduction significantly influences cell functions and its mis-regulation is at the heart of various pathologies. A quantitative characterization of the relationship between mechanical forces and resulted mechanotransduction is pivotal in understanding the rules of life and innovating new therapeutic strategies [1-3]. However, while such relationship on the cell surface membrane and cytoskeleton have been well studied, little is known about whether/how mechanical forces applied on the cell interior nucleus (“headquarter… More >

  • Open Access

    PROCEEDINGS

    Mechano-Regulated Intercellular Waves Among Cancer Cells

    Chenyu Liang1, Bo Zeng2, Mai Tanaka3, Andrea Kannita Noy1, Matthew Barrett1, Erica Hengartner1, Abygale Cochrane4, Laura Garzon1, Mitchell Litvinov5, Dietmar Siemann3, Xin Tang1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011126

    Abstract Cancer accounts for 12.6% of all human deaths worldwide and 90% of cancer-related deaths are due to metastasis: the dissemination of invasive tumor cells from the primary tumors to other vital organs [1-3]. However, how these invasive tumor cells coordinate with each other to achieve the dissemination remains unclear. Recently we discovered that human tumor cells can initiate and transmit previously unknown long-distance (~100s m) intercellular biochemical waves in a microenvironment-mechanics-regulated manner. [4-5] In this presentation, we will present our new results on (1) the 2D/3D spatial-temporal characterization of the long-distance and the intra-/inter-cellular Ca2+ signals; More >

  • Open Access

    PROCEEDINGS

    Investigation of the Effects of Bone Material Modelling Strategies on the Biomechanics of the Thoracolumbar Spine Using Finite Element Method

    Ching-Chi Hsu1,*, Hsin-Hao Lin1, Kao-Shang Shih2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011792

    Abstract Decompression surgery is one of the useful methods to relieve the pressure on the spinal cord and nerves [1]. In computational simulation, various bone material modelling strategies have been used to model cortical bone and cancellous bone of spinal vertebrae [2,3]. However, the effects of the bone material modelling strategies on the biomechanics of the thoracolumbar spine are unclear. Thus, this study aimed to investigate the biomechanics of the thoracolumbar spine with various bone modelling strategies using a patient-specific finite element modelling technique.
    Three-dimensional finite element models of the human thoracolumbar spine were developed from the… More >

  • Open Access

    PROCEEDINGS

    In-Silico Automated 3D Reconstruction of the Biomechanical Trapeziometacarpal Joint from 4D Imaging

    Yen-Jen Lai1, I-Ling Chang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012918

    Abstract Biomechanical research reveals that the geometric shapes and dynamic behaviors of organ tissues play a pivotal role in determining their mechanical properties. Recent advancements in time-correlated imaging technologies, such as Computed Tomography (4D-CT) and Magnetic Resonance Imaging (4D-MRI), have enabled the non-invasive capture of both geometric data and dynamic information over time. However, the manual segmentation of these extensive datasets proves to be laborious and expensive. This study introduces an automated workflow designed for image segmentation and classification within 4D-CT scans, with a specific focus on the bone structures surrounding the Trapeziometacarpal (TMC) joint in More >

  • Open Access

    REVIEW

    Advances in micropillar arrays in cellular biomechanics detection and tissue engineering

    XUELING HE, LINLU JIN, YIXUE QIN, JIAN ZHONG, ZHI OUYANG, YE ZENG*

    BIOCELL, Vol.48, No.11, pp. 1521-1529, 2024, DOI:10.32604/biocell.2024.055410 - 07 November 2024

    Abstract Cellular biomechanical features contributed to the occurrence and development of various physiological and pathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment and manipulation of cellular biomechanical characteristics. This comprehensive review provides an in-depth understanding of the fabrication methodologies of micropillar arrays and their applications in deciphering and fine-tuning cellular biomechanical properties and the innovative experimental platforms including organ-on-a-chip and organoids-on-a-chip. This review provides novel insights into the potential of micropillar technology, poised to update the landscape of stem cell research and tissue engineering. More >

  • Open Access

    ARTICLE

    Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm

    Guilin Wu1,2, Shenghua Huang1, Tingting Liu3, Zhuoni Yang3, Yuesong Wu2, Guihong Wei1, Peng Yu1,*, Qilin Zhang4, Jun Feng4, Bo Zeng5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2709-2725, 2024, DOI:10.32604/cmes.2023.031399 - 15 December 2023

    Abstract Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life and prognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice. However, esophageal stents of different types and parameters have varying adaptability and effectiveness for patients, and they need to be individually selected according to the patient’s specific situation. The purpose of this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3D printing technology to fabricate esophageal stents with different ratios of… More >

Displaying 1-10 on page 1 of 102. Per Page