Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (83)
  • Open Access

    ARTICLE

    Hydroprocessing and Blending of a Biomass-Based DTG-Gasoline

    David Graf, Philipp Neuner, Reinhard Rauch*

    Energy Engineering, Vol.119, No.6, pp. 2169-2192, 2022, DOI:10.32604/ee.2022.022759

    Abstract The number of annually registered internal-combustion vehicles still exceeds electric-driven ones in most regions, e.g., Germany. Ambitious goals are disclosed with the European Green Deal, which calls for new technical approaches and greenhouse gas neutral transition technologies. Such bridging technologies are synthetic fuels for the transportation sector, e.g., using the bioliq® process for a CO2-neutral gasoline supply. Fuels must meet the applicable national standards to be used in existing engines. Petrochemical parameters can be variably adapted to their requirements by hydroprocessing. In this work, we considered the upgrading of aromatic-rich DTG gasoline from the bioliq® process. The heavy gasoline was… More >

  • Open Access

    ARTICLE

    Effects of Fertilization on Soil CO2 Efflux in Chinese Hickory (Carya cathayensis) Stand

    Juan Liu1,2,*, Meiqun Zheng1, Xueshuang Chen1

    Phyton-International Journal of Experimental Botany, Vol.92, No.1, pp. 271-283, 2023, DOI:10.32604/phyton.2022.023397

    Abstract Chinese hickory (Carya cathayensis Sarg.) is a popular nut tree in China, but there is little information about the influences of fertilization on soil CO2 efflux and soil microbial biomass. This study evaluated the short-term effects of different fertilizer applications on soil CO2 efflux and soil microbial biomass in Chinese hickory stands. Four fertilizer treatments were established: control (CK, no fertilizer), inorganic fertilizer (IF), organic fertilizer (OF), and equal parts organic and inorganic N fertilizers (OIF). A field experiment was conducted to measure soil CO2 effluxes using closed chamber and gas chromatography techniques. Regardless of the fertilization practices, soil CO2More >

  • Open Access

    REVIEW

    Hydrochar Pelletization towards Solid Biofuel from Biowaste Hydrothermal Carbonization

    Ao Li, Kai Jin, Jinrui Qin, Zhaowei Huang, Yu Liu, Rui Chen, Tengfei Wang*, Junmin Chen*

    Journal of Renewable Materials, Vol.11, No.1, pp. 411-422, 2023, DOI:10.32604/jrm.2022.024889

    Abstract Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to fact that moisture involved can be directly used as reaction media under subcritical-water region. With this, value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion. In this review, the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste, coalification degree with elemental composition and evolution, pelletization of hydrochar to enhance the mechanical properties and density, coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters. Potential applications for… More > Graphic Abstract

    Hydrochar Pelletization towards Solid Biofuel from Biowaste Hydrothermal Carbonization

  • Open Access

    ARTICLE

    Production of Producer Gas from Densified Agricultural Biomass in Downdraft Gasifier and Its Application to Small Diesel Engines

    Kittikorn Sasujit1,*, Nigran Homdoung1, Nakorn Tippayawong2

    Energy Engineering, Vol.119, No.5, pp. 2149-2167, 2022, DOI:10.32604/ee.2022.022069

    Abstract Biomass is becoming one of the most popular renewable energy sources, especially from agricultural wastes. These wastes can be gasified and utilized in various industries. This experimental study investigated producer gas generation from densified agricultural fuels such as corncobs, rice husks, wood chips, and oil palm fronds in a 50 kWth throatless downdraft gasifier. This system produced combustible gases such as H2, CO, and CH4, which were utilized as a substitute for diesel fuel in a small diesel engine for power generation. The results showed that the gasifier performs successfully and seems to prefer pellets to briquettes. Producer gas contains 18%–20%… More >

  • Open Access

    ARTICLE

    Formation Mechanism of Biomass Aromatic Hydrocarbon Tar on Quantum Chemistry

    Bo Chen1, Bo Liu2,*, Yong Chao3, Chao Zhong1

    Journal of Renewable Materials, Vol.10, No.12, pp. 3491-3504, 2022, DOI:10.32604/jrm.2022.021302

    Abstract The formation process of aromatic hydrocarbon tar during the pyrolysis process of biomass components of cellulose and lignin was carried out by quantum chemical calculation based on density functional theory method B3LYP/6-31G++(d, p). 5-Hydroxymethylfurfural was chosen as the model compound of cellulose and hemicellulose, and syringaldehyde was chosen as the model compound of lignin. The calculation results show that the formation process of cellulose monocyclic aromatic hydrocarbon tar is the conversion process of benzene ring from furan ring, and the highest reaction energy barrier appears in the process of decarbonylation, which is 370.8 kJ/mol. The formation of lignin monocyclic aromatic… More >

  • Open Access

    ARTICLE

    Formaldehyde Free Renewable Thermosetting Foam Based on Biomass Tannin with a Lignin Additive

    Bowen Liu1, Yunxia Zhou1, Hisham Essawy2, Shang Feng1, Xuehui Li1, Jingjing Liao1, Xiaojian Zhou1,3,*, Jun Zhang1,*, Sida Xie1

    Journal of Renewable Materials, Vol.10, No.11, pp. 3009-3024, 2022, DOI:10.32604/jrm.2022.019848

    Abstract This study presents easily prepared free formaldehyde bio-based foam based on a prepared thermosetting resin comprising tannin–lignin–furfuryl alcohol-glyoxal (TLFG) via mechanical stirring in presence of ether as a foaming agent. The foam was developed through a co-polycondensation reaction of glyoxal and furfuryl alcohol with condensed tannin and lignin, which is a forest-derived product. Investigation using scanning electron microscopy (SEM) showed more closed-cell structure without cracks and collapse in the TLFG foam, with a higher apparent density with respect to tannin–furanic–formaldehyde (TFF) foam. Differential scanning calorimetry (DSC), dynamic thermomechanical analysis (DTMA), and thermogravimetric analysis (TGA) investigations revealed that the curing process… More >

  • Open Access

    ARTICLE

    N-Exponential Fertilization Could Affect the Growth and Nitrogen Accumulation of Metasequoia glyptostroboides Seedling in a Greenhouse Environment

    Jiasen Wu1, Genping Tong2, Rui Guo2, Zihao Ye1, Jin Jin1, Haiping Lin1,3,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.10, pp. 2211-2220, 2022, DOI:10.32604/phyton.2022.021382

    Abstract Metasequoia glyptostroboides (M. glyptostroboides) is a unique plant species related to relic flora in China. It plays a positive role in afforestation and its long-term protection with high paleoclimate research value. However, due to the nutrients-supply deficiency, it is a big challenge to cultivate the high-quality seedlings of M. glyptostroboides. In this study, a pot experiment in a greenhouse environment was carried out to identify the effect of N-exponential fertilization on the growth and nutrient distribution of M. glyptostroboides seedling. The M. glyptostroboides rooted seedlings with 12-month growth were chosen. Different N fertilizer levels with conventional fertilization (CF: 5.0 g… More >

  • Open Access

    ARTICLE

    Comparison of Ashes Produced in a Biomass Moving Grate Boiler by Wood Chips and Sewage Sludge

    Baraket Nada1,2,3,*, Brandelet Benoit1, Trouvé Gwenaëlle2, Rogaume Yann1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1419-1425, 2022, DOI:10.32604/fdmp.2022.021753

    Abstract One option to fight global warming is to convert our use of fossil energy into renewables such as biomass energy. However, the forest preservation and the quality of the ambient air are also two major issues. Therefore, the use of biomass waste without any supplementary emissions could represent a part of the solution. In this study, two fuels were considered for a 200 kW moving grate boiler. A multicyclone and a bag filter were fitted on the boiler. The first fuel consisted of classical wood chips whereas the second was a mixture of wood chips with sewage sludge. This second… More >

  • Open Access

    ARTICLE

    How Physical Disturbance and Nitrogen Addition Affect the Soil Carbon Decomposition?

    Muhammad Junaid Nazir1,2, Xiuwei Zhang1,*, Daolin Du2, Feihai Yu1

    Phyton-International Journal of Experimental Botany, Vol.91, No.9, pp. 2087-2097, 2022, DOI:10.32604/phyton.2022.021412

    Abstract The decomposition of soil organic carbon (SOC) plays a critical role in regulating atmospheric CO2 concentrations and climate dynamics. However, the mechanisms and factors controlling SOC decomposition are still not fully understood. Here, we conducted a 60 days incubation experiment to test the effects of physical disturbance and nitrogen (N) addition on SOC decomposition. N addition increased the concentration of NO3- by 51% in the soil, but had little effect on the concentration of NH4+. N addition inhibited SOC decomposition, but such an effect differed between disturbed and undisturbed soils. In disturbed and undisturbed soils, application of N decreased SOC… More >

  • Open Access

    ARTICLE

    Effect of Varying Temperature and Oxygen on Particulate Matter Formation in Oxy-Biomass Combustion

    Chen Wang1, Cicilia Kemunto Mesa2,*, Samuel Bimenyimana1,3, Nathan Bogonko2, George Adwek4, Yiyi Mo1, Godwin Norense Osarumwense Asemota5,6, Changfu Yuan7, Yaowen Chen7, Changtai Li8, Etienne Ntagwirumugara9, Aphrodis Nduwamungu5

    Energy Engineering, Vol.119, No.3, pp. 863-881, 2022, DOI:10.32604/ee.2022.019248

    Abstract Offsetting particulate matter emissions has become a critical global aim as there are concerted efforts to deal with environmental and energy poverty challenges. This study consists of investigations of computing emissions of particulate matter from biomass fuels in various atmospheres and temperatures. The laboratory setup included a fixed bed electric reactor and a particulate matter (PM) measuring machine interfaced with the flue gas from the fixed bed reactor combustion chamber. The experiments were conducted at seven different temperatures (600°C–1200°C) and six incremental oxygen concentrations (21%–100%). Five biomass types were studied; A-cornstalk, B-wood, C-wheat straw, D-Rice husk, E-Peanut shell, each pulverized… More > Graphic Abstract

    Effect of Varying Temperature and Oxygen on Particulate Matter Formation in Oxy-Biomass Combustion

Displaying 21-30 on page 3 of 83. Per Page