Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (81)
  • Open Access

    EDITORIAL

    Renewable Biomass as a Platform for Preparing Green Chemistry

    Qiaoguang Li1,*, Puyou Jia2,*, Ying Luo3, Yue Liu4

    Journal of Renewable Materials, Vol.12, No.2, pp. 325-328, 2024, DOI:10.32604/jrm.2023.044083

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data–A New Method for Inner Mongolia Typical Grasslands

    Ruochen Wang1,#, Jianjun Dong2,#, Lishan Jin3, Yuyan Sun3, Taogetao Baoyin2, Xiumei Wang*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 387-411, 2024, DOI:10.32604/phyton.2024.047573

    Abstract Grassland biomass is an important parameter of grassland ecosystems. The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge. Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass (AGB) estimation. In order to improve the accuracy of vegetation index inversion of grassland AGB, this study combined ground and Unmanned Aerial Vehicle (UAV) remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis. The narrow band vegetation indices were calculated, and ground and airborne… More >

  • Open Access

    ARTICLE

    Comparison of Combustion Characteristics of Tars Produced with Tobacco Stem Biomass Gasification

    Bo Chen1, Mingjun Wang2, Bo Liu3,*, Chunping Lu4, Guohai Jia1, Yong Chao5, Chao Zhong1

    Journal of Renewable Materials, Vol.12, No.1, pp. 119-129, 2024, DOI:10.32604/jrm.2023.031521

    Abstract In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas, “tobacco stem semi-tar inside furnace”, “tobacco stem tar inside furnace” and “tobacco stem tar out-of-furnace” were subjected to thermogravimetric experiments, and the combustion characteristics and kinetic characteristics were analyzed. The result shows that “tobacco stem semi-tar inside furnace” has the highest value and “tobacco stem tar out-of-furnace” is has the lowest value on ignition characteristics, combustion characteristics and combustible stability; “tobacco stem semi-tar inside furnace” has the lowest value and “tobacco stem tar outside furnace” has the highest value on burnout characteristics; “tobacco… More > Graphic Abstract

    Comparison of Combustion Characteristics of Tars Produced with Tobacco Stem Biomass Gasification

  • Open Access

    ARTICLE

    Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites: Adsorption Kinetics and Mechanism Analysis

    Haodong Li1, Huiling Du1,*, Le Kang1, Yewen Zhang1, Tong Lu1, Yuchan Zhang1, Lan Yang2, Shijie Song2

    Journal of Renewable Materials, Vol.11, No.12, pp. 4161-4174, 2023, DOI:10.32604/jrm.2023.028877

    Abstract The large accumulation of coal gangue, a common industrial solid waste, causes severe environmental problems, and green development strategies are required to transform this waste into high-value-added products. In this study, low-cost ceramsites adsorbents were prepared from waste gangue, silt coal, and peanut shells and applied to remove the organic dye methylene blue from wastewater. We investigated the microstructure of ceramsites and the effects of the sintering atmosphere, sintering temperature, and solution pH on their adsorption performance. The ceramsites sintered at 800°C under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites; further, it exhibited… More > Graphic Abstract

    Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites: Adsorption Kinetics and Mechanism Analysis

  • Open Access

    REVIEW

    Nigerian Biomass for Bioenergy Applications: A Review on the Potential and Challenges

    Adekunle A. Adeleke1,*, Nzerem Petrus2, Salihu Ayuba2, Asmau M. Yahya2, Peter P. Ikubanni3, Ikechuckwu S. Okafor2, Stephen S. Emmanuel4, Adebayo I. Olosho4, Ademidun A. Adesibikan4

    Journal of Renewable Materials, Vol.11, No.12, pp. 4123-4141, 2023, DOI:10.32604/jrm.2023.043915

    Abstract Nigeria, often referred to as “the giant of Africa,” boasts a sizable population, a thriving economy, and abundant energy resources. Nevertheless, Nigeria has yet to fully harness its renewable energy potential, despite its enormous capacity in this field. The goal of this review paper is to thoroughly examine the difficulties and untapped opportunities in utilizing biomass for bioenergy production in Nigeria. Notably, Nigeria generates substantial volumes of biomass annually, primarily in the form of agricultural waste, which is often either discarded or burned inefficiently, resulting in significant ecological and environmental damage. Therefore, an efficient approach to reducing pollution and transforming… More > Graphic Abstract

    Nigerian Biomass for Bioenergy Applications: A Review on the Potential and Challenges

  • Open Access

    ARTICLE

    Acidic Magnetic Biocarbon-Enabled Upgrading of Biomass-Based Hexanedione into Pyrroles

    Zhimei Li1, Kuan Tian2, Keping Wang2, Zhengyi Li2, Haoli Qin1,*, Hu Li2,*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3847-3865, 2023, DOI:10.32604/jrm.2023.030122

    Abstract Sustainable acquisition of bioactive compounds from biomass-based platform molecules is a green alternative for existing CO2-emitting fossil-fuel technologies. Herein, a core–shell magnetic biocarbon catalyst functionalized with sulfonic acid (Fe3O4@SiO2@chitosan-SO3H, MBC-SO3H) was prepared to be efficient for the synthesis of various N-substituted pyrroles (up to 99% yield) from bio-based hexanedione and amines under mild conditions. The abundance of Brønsted acid sites in the MBC-SO3H ensured smooth condensation of 2,5-hexanedione with a variety of amines to produce N-substituted pyrroles. The reaction was illustrated to follow the conventional PallKnorr coupling pathway, which includes three cascade reaction steps: amination, loop closure and dehydration. The… More > Graphic Abstract

    Acidic Magnetic Biocarbon-Enabled Upgrading of Biomass-Based Hexanedione into Pyrroles

  • Open Access

    REVIEW

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

    Annisa Ardiyanti, Suprapto Suprapto, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3789-3806, 2023, DOI:10.32604/jrm.2023.031354

    Abstract Dyes are pervasive contaminants in wastewater, posing significant health risks to both humans and animals. Among the various methods employed for effective dye removal, adsorption has emerged as a highly promising approach due to its notable advantages, including high efficiency, cost-effectiveness, low energy consumption, and operational simplicity compared to alternative treatments. This comprehensive review focuses on investigating adsorbents derived from biowastes and biomass, specifically carbon-based and non-conventional adsorbents, for the removal of malachite green, a widely used dye known for its toxic and carcinogenic properties. Carbon-based adsorbents encompass two main types: activated carbon and biochar, while non-conventional adsorbents refer to… More > Graphic Abstract

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

  • Open Access

    ARTICLE

    Synthesis of Carbon dots from Biomass Chenpi for the Detection of Hg2+

    Jun Xiang1,2,*, Xiaoqing Chen1, Qi Liu1, Huihua Jing2, Tongqiang Chen2, Wanli Tang2, Wenyang Xu2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3739-3750, 2023, DOI:10.32604/jrm.2023.028090

    Abstract Biomass-derived carbon dots (C-dots) are considered a very important carbon material in metal ion detection of their small environmental impact, simple preparation process, and relatively low cost. A green approach for synthesizing biomass-derived C-dots from Chenpi using a hydrothermal method without further processing is proposed in the present study. The as-synthesized C-dots show excellent fluorescence properties, superior resistance to UV irradiation photobleaching, and high photostability in salt-containing solutions. The C-dots were used in the form of label-free fluorescent probes for sensitively detecting Hg2+ selectively. The outcome relationship behaved linearly and was established based on a given range between 10–300 nM… More > Graphic Abstract

    Synthesis of Carbon dots from Biomass Chenpi for the Detection of Hg<sup>2+</sup>

  • Open Access

    ARTICLE

    Physicochemical Properties of Combustion Ashes of Some Trees (Urban Pruning) Present in the Neotropical Region

    John Freddy Gelves-Díaz1,*, Ludovic Dorkis2, Richard Monroy-Sepúlveda1, Sandra Rozo-Rincón1, Yebrail Alexis Romero-Arcos1

    Journal of Renewable Materials, Vol.11, No.10, pp. 3769-3787, 2023, DOI:10.32604/jrm.2023.029270

    Abstract Secondary lignocellulosic biomass has proved to be useful as an energy source through its oxidation by means of combustion processes. In accordance with the above, in this paper, we wanted to study the ash from urban pruning residues that are generated in cities in the Neotropics. Species such as Licania tomentosa, Azadirachta indica, Ficus benjamina, Terminalia catappa, Leucaena leucocephala, Prosopis juliflora and Pithecellobium dulce were selected because they have been previously studied and showed potential for thermal energy generation. These materials were calcined in an oxidizing atmosphere and characterized by X-ray diffraction and fluorescence, scanning electron microscopy with microchemistry, BET… More > Graphic Abstract

    Physicochemical Properties of Combustion Ashes of Some Trees (Urban Pruning) Present in the Neotropical Region

  • Open Access

    ARTICLE

    Urban Plant Biomass Residues from the Neotropics and Their Potential for Thermal Energy Generation

    John Freddy Gelves Díaz1,*, Ludovic Dorkis2, Richard Monroy-Sepúlveda1, Sandra Rozo-Rincón1, Gabriel de Jesús Camargo Vargas3

    Journal of Renewable Materials, Vol.11, No.9, pp. 3547-3566, 2023, DOI:10.32604/jrm.2023.029267

    Abstract The material associated with tree pruning in a city in the Colombian neotropics was characterized in order to determine its energy potential. The species studied for their relevance in the territory were Prosopis juliflora, Licania tomentosa, Terminalia catappa, Azadirachta indica, Pithecellobium dulce, Ficus benjamina and Leucaena leucocephala. Moisture content, bulk density, hygroscopic response, elemental chemical analysis, proximal analysis, calorific value, ease of ignition and combustion, thermogravimetric and heat flow analysis, steam generation capacity, and qualitative analysis of gases (mass spectrometry) were determined. The results that were obtained show high initial moisture contents that vary between 37% and 67% and a… More > Graphic Abstract

    Urban Plant Biomass Residues from the Neotropics and Their Potential for Thermal Energy Generation

Displaying 1-10 on page 1 of 81. Per Page