Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    REVIEW

    Sustainable Biocomposites Materials for Automotive Brake Pad Application: An Overview

    Joseph O. Dirisu1,*, Imhade P. Okokpujie2,3,*, Olufunmilayo O. Joseph1, Sunday O. Oyedepo1, Oluwasegun Falodun4, Lagouge K. Tartibu3, Firdaussi D. Shehu1

    Journal of Renewable Materials, Vol.12, No.3, pp. 485-511, 2024, DOI:10.32604/jrm.2024.045188

    Abstract Research into converting waste into viable eco-friendly products has gained global concern. Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land. This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads. Materials made by biocomposite, rather than fossil fuels, will be favoured. A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements. The development of materials with diverse compositions… More > Graphic Abstract

    Sustainable Biocomposites Materials for Automotive Brake Pad Application: An Overview

  • Open Access

    ARTICLE

    Characterization of Formacell Lignin Derived from Black Liquor as a Potential Green Additive for Advanced Biocomposites

    Sri Hidayati1,*, Eugenia Fonny Budiyanto1, Hadi Saputra1, Sutopo Hadi1, Apri Heri Iswanto2,3, Nissa Nurfajrin Solihat4, Petar Antov5, Lee Seng Hua6,7, Widya Fatriasari4,8, Mohd. Sapuan Salit9

    Journal of Renewable Materials, Vol.11, No.6, pp. 2865-2879, 2023, DOI:10.32604/jrm.2023.027579

    Abstract Black liquor is obtained as a by-product of the pulping process, which is used to convert biomass into pulp by removing lignin, hemicelluloses and other extractives from wood to free cellulose fibers. Lignin represents a major constituent in black liquor, with quantities varying from 20% to 30%, of which a very low share is used for manufacturing value-added products, while the rest is mainly burned for energy purposes, thus underestimating its great potential as a raw material. Therefore, it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals. The aim… More > Graphic Abstract

    Characterization of Formacell Lignin Derived from Black Liquor as a Potential Green Additive for Advanced Biocomposites

  • Open Access

    ARTICLE

    Preparation and Performance of Pueraria lobata Root Powder/Polylactic Acid Composite Films

    Shuang Zhao1, Shenglan Chen2, Shuan Ren1, Gang Li3, Ke Song1,4, Jie Guo1,4, Shima Liu1,4, Jian He1,4, Xianwu Zhou1,4,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2531-2553, 2023, DOI:10.32604/jrm.2023.026066

    Abstract Petroleum-based materials, such as plastic, are characterized by adverse environmental pollution; as a result, researchers have sought alternative degradable plastics that are environmentally friendly, such as polylactic acid (PLA). PLA has shown great potential to replace petroleum-based plastics. In this study, seven different samples of unmodified Pueraria lobata root powder (PRP) with different contents (i.e., 0, 5, 10, 15, 20, 25, and 30 wt%) and three different modified PRPs (i.e., treated with NaOH, NaOH-KH-550, and Formic) were used to reinforce polylactic acid (PLA) via solution casting process. These prepared PRP/PLA composite films were characterized using SEM, FTIR, UV-visible spectra analysis,… More > Graphic Abstract

    Preparation and Performance of <i>Pueraria lobata</i> Root Powder/Polylactic Acid Composite Films

  • Open Access

    ARTICLE

    Preparation and Characterization of Thermoplastic Starch from Sugar Palm (Arenga pinnata) by Extrusion Method

    Muhammad Ghozali1,2, Yenny Meliana2, Widya Fatriasari3, Petar Antov4, Mochamad Chalid1,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1963-1976, 2023, DOI:10.32604/jrm.2023.026060

    Abstract Sugar palm (Arenga pinnata) starch is considered an important renewable, biodegradable, and eco-friendly polymer, which is derived from agricultural by-products and residues, with great potential for the development of biocomposite materials. This research was aimed at investigating the development of TPS biocomposites from A. pinnata palm starch using an extrusion process. Palm starch, glycerol, and stearic acid were extruded in a twin-screw extruder. Scanning electron microscopy (SEM) analysis of TPS showed that the starch granules were damaged and gelatinized in the extrusion process. The density of TPS was 1.3695 g/mL, lower than that of palm starch, and the addition of… More > Graphic Abstract

    Preparation and Characterization of Thermoplastic Starch from Sugar Palm (<i>Arenga pinnata</i>) by Extrusion Method

  • Open Access

    ARTICLE

    Tensile Strength and Water Absorption Behavior of Recycled Jute-Epoxy Composites

    Sihan Wang, Reza Masoodi*, Janet Brady, Brian R. George

    Journal of Renewable Materials, Vol.1, No.4, pp. 279-288, 2013, DOI:10.7569/JRM.2013.634122

    Abstract Recycled natural fi bers and biopolymers with sustainable, eco-friendly, and biodegradable properties are receiving increased attention. The moisture absorption and swelling of natural fi ber composites adversely infl uence their mechanical properties and applications. In this research, bio-based epoxy polymers that are reinforced with recycled woven jute fabrics were subjected to water immersion tests in order to study the effect of water absorption on their mechanical and geometrical properties. For comparison, petroleum-based epoxy polymers that are reinforced with new woven jute fabrics were also subjected to the same tests. The effect of fi ber percentage on water absorption, thickness swelling,… More >

  • Open Access

    ARTICLE

    Biodegradability and Compostability of Lignocellulosic Based Composite Materials

    Sudhakar Muniyasamy1, Andrew Anstey2, Murali M. Reddy1, Manju Misra1,2, Amar Mohanty1,2,*

    Journal of Renewable Materials, Vol.1, No.4, pp. 253-272, 2013, DOI:10.7569/JRM.2013.634117

    Abstract Lignocellulosic composites have attracted interest from both academia and industry due to their benefi cial environmental and sustainability attributes. The lignocellulosic industry has seen remarkable improvements in the development of composites for high performance applications. Both biodegradable as well as non-biodegradable polymers are used in the design and engineering of lignocellulosic composites. Biodegradability studies of lignocellulosic composites in soil and composting environments help in planning their end-life management. Biodegradability tests are complex and dependent on the environment in which the testing is carried out. Due to this, standards have been developed by international agencies such as the American Society for… More >

  • Open Access

    ARTICLE

    Processing and Characterization of Nano-biocomposites Based on Mater-Bi® with Layered Silicates

    A. Terenzi1, A. Iannoni1, L. Torre1, A. Jiménez2,*, J.M. Kenny1

    Journal of Renewable Materials, Vol.2, No.1, pp. 42-51, 2014, DOI:10.7569/JRM.2014.634101

    Abstract The development of new nano-biocomposites has been one of the main research areas of interest in polymer science in recent years, since they can combine the intrinsic biodegradable nature of matrices with the ability to modify their properties by the addition of selected nano-reinforcements. In this work, the addition of mineral nanoclays (montmorillonites and sepiolites) to a commercial starch-based matrix is proposed. A complete study on their processing by melt-intercalation techniques and further evaluation of the main properties of nano-biocomposites has been carried out. The results reported show an important infl uence of the nano-biocomposites morphology on their fi nal… More >

  • Open Access

    ARTICLE

    Tannin-Resorcinol-Formaldehyde Resin and Flax Fiber Biocomposites

    A. Sauget1,*, X. Zhou1, A. Pizzi1,2

    Journal of Renewable Materials, Vol.2, No.3, pp. 173-181, 2014, DOI:10.7569/JRM.2013.634128

    Abstract Tannin-resorcinol-formaldehyde (TRF) resin shows a good compatibility with natural fl ax fi bers and yields composite materials of good mechanical properties when using paraformaldehyde as a hardener. Different formulations, curing parameters and processes such as high-temperature curing in press or spray-drying have been explored in order to adapt this resin to composite manufacturing and to improve the properties of this new material. Additional testing has been performed on the TRF resin by thermomechanical analysis to observe its reactivity at different pH and with the use of different hardeners. More >

  • Open Access

    ARTICLE

    Foam-Laid Thermoplastic Composites Based on Kraft Lignin and Softwood Pulp

    Antti Ojala1,*, Lisa Wikström1, Kalle Nättinen2, Jani Lehmonen3, Karita Kinnunen-Raudaskoski4

    Journal of Renewable Materials, Vol.2, No.4, pp. 278-284, 2014, DOI:10.7569/JRM.2014.634126

    Abstract This article presents a new method of producing thermomoldable nonwoven materials based on kraft lignin (KL) and softwood kraft pulp (KP). A mixture of starch acetate (SA) and triethyl citrate (TEC) was used as a water insoluble plasticizer for KL. The thermoplastic lignin (TPL) material with the optimized ratio of KL, SA and TEC was prepared in a twin-screw extruder. The TPL compound was ground and mixed with KP fi bers to produce thermoformable sheets using foam-laid technology. The formed webs were compression molded (CM) into plates and mechanically tested. The foam-laid composites had tensile strengths and modulus of 67… More >

  • Open Access

    ARTICLE

    Biocomposites of Flax Fiber and Polylactic Acid: Processing and Properties

    Hedieh Teymoorzadeh1, Denis Rodrigue2,*

    Journal of Renewable Materials, Vol.2, No.4, pp. 270-277, 2014, DOI:10.7569/JRM.2014.634127

    Abstract This work investigates the effect of the addition of fl ax fi ber (15, 25, and 40 wt%) on the mechanical, morphological, rheological, and thermal properties of polylactic acid (PLA). In the fi rst step, no coupling agent was used to produce fully biodegradable and biobased composites. In particular, fl exural tests were performed on the composites to evaluate their mechanical properties, while density, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and rheological tests were also carried out. Scanning electron microscopy images (SEM) show good fl ax fi ber dispersion in the PLA matrix along with good contact between both… More >

Displaying 1-10 on page 1 of 33. Per Page