Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Hybrid Imperialist Competitive Evolutionary Algorithm for Solving Biobjective Portfolio Problem

    Chun’an Liu1,*, Qian Lei2, Huamin Jia3

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1477-1492, 2020, DOI:10.32604/iasc.2020.011853 - 24 December 2020

    Abstract Portfolio optimization is an effective way to diversify investment risk and optimize asset management. Many multiobjective optimization mathematical models and metaheuristic intelligent algorithms have been proposed to solve portfolio problem under an ideal condition. This paper presents a biobjective portfolio optimization model under the assumption of no short selling. In order to obtain sufficient number of portfolio optimal solutions uniformly distributed on the portfolio efficient Pareto front, a hybrid imperialist competitive evolutionary algorithm which combines a multi-colony levy crossover operator and a simple-colony moving operator with random perturbation is also given. The performance of the More >

Displaying 1-10 on page 1 of 1. Per Page