Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Influence of Formulation and Hot-Pressing Conditions on the Performance of Bio-Based Molasses Adhesive for Plywood

    Jajang Sutiawan1, Alifah Syahfitri2, Sukma Surya Kusumah1, Dede Hermawan2,*, Rita Kartika Sari2, Luthfi Hakim3, Efri Mardawati4,5, Muhammad Adly Rahandi Lubis1,4,*

    Journal of Renewable Materials, Vol.12, No.8, pp. 1383-1397, 2024, DOI:10.32604/jrm.2024.052052 - 06 September 2024

    Abstract Molasses can serve as a natural adhesive for plywood and particleboard. However, several disadvantages remain, including lower dimensional stability and low bonding strength compared to other adhesives. Therefore, modifications are needed to use molasses as an adhesive for plywood. This research aims to improve bio-based molasses (MO) adhesive for plywood using citric acid (CA) adhesive. In addition, this research aims to analyze the effect of adding citric acid and to investigate the optimum hot-pressing temperature to produce the best quality plywood. In the first stage, the molasses and citric acid were combined in a ratio… More > Graphic Abstract

    Influence of Formulation and Hot-Pressing Conditions on the Performance of Bio-Based Molasses Adhesive for Plywood

  • Open Access

    REVIEW

    Overview of the Synthesis, Characterization, and Application of Tannin-Glyoxal Adhesive for Wood-Based Composites

    Awanda Wira Anggini1,2, Rita Kartika Sari2, Efri Mardawati3,4, Tati Karliati5, Apri Heri Iswanto6, Muhammad Adly Rahandi Lubis1,4,*

    Journal of Renewable Materials, Vol.12, No.7, pp. 1165-1186, 2024, DOI:10.32604/jrm.2024.051854 - 21 August 2024

    Abstract More than a century after its initial synthesis, urea-formaldehyde (UF) resins still have dominant applications as adhesives, paints, and coatings. However, formaldehyde in this industry produces formaldehyde emissions that are dangerous to health. Scientists have spent the last decade replacing formaldehyde and phenol with environmentally friendly substances such as glyoxal and tannin to create bio-based adhesives. This review covers recent advances in synthesizing glyoxal tannin-based resins, especially those made from sustainable raw material substitutes and changes made to synthetic processes to improve mechanical properties. The efficacy of using tannin-glyoxal adhesives in producing wood-based composites has… More > Graphic Abstract

    Overview of the Synthesis, Characterization, and Application of Tannin-Glyoxal Adhesive for Wood-Based Composites

  • Open Access

    REVIEW

    Valorization of Tree Bark-Derived Suberin in Applications for the Bio-Based Composites Industry–A Recent Review

    Aleksandra Jeżo*

    Journal of Renewable Materials, Vol.12, No.6, pp. 1029-1042, 2024, DOI:10.32604/jrm.2024.051330 - 02 August 2024

    Abstract Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers, for example, in wood-based composites. In addition to primary and secondary metabolites, tree bark also contains suberin, which plays a major role in protecting the tree from environmental conditions. Suberin is a natural aliphatic-aromatic cross-linked polyester present in the cell walls of both normal and damaged external tissues, the main component of which are long-chain aliphatic acids. Its main role as a plant ingredient is to protect against microbiological factors and water loss. One of the most important suberin More >

  • Open Access

    ARTICLE

    Bio-Based Rigid Polyurethane Foams for Cryogenic Insulation

    Laima Vevere*, Beatrise Sture, Vladimir Yakushin, Mikelis Kirpluks, Ugis Cabulis

    Journal of Renewable Materials, Vol.12, No.3, pp. 585-602, 2024, DOI:10.32604/jrm.2024.047350 - 11 April 2024

    Abstract Cryogenic insulation material rigid polyurethane (PU) foams were developed using bio-based and recycled feedstock. Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations. The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties. Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37–40 kg/m3. The developed… More > Graphic Abstract

    Bio-Based Rigid Polyurethane Foams for Cryogenic Insulation

  • Open Access

    ARTICLE

    Synthesis and Characterization of Phenyl Camellia oleifera Seed Oil Ester Plasticizing PVC

    Wenqing Xiao1,#, Yuhang Liu2,#, Yuxin He1, Qiaoguang Li1,*, Yongquan Li3,*

    Journal of Renewable Materials, Vol.12, No.3, pp. 615-628, 2024, DOI:10.32604/jrm.2023.046780 - 11 April 2024

    Abstract Plasticizers are essential additives in the processing of polyvinyl chloride (PVC), with phthalate plasticizers being widely used. However, these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly, necessitating the exploration of eco-friendly bio-based alternatives. In this study, Camellia oleifera seed oil, a specialty resource in China, was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline) (AG-80) to synthesize Phenyl Camellia seed Oil Ester (PCSOE). PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations, with the conventional plasticizer dioctyl phthalate (DOP) serving as a control.… More >

  • Open Access

    ARTICLE

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

    Hu Shi, Wei Cai, Xin Wang*, Lei Song, Yuan Hu*

    Journal of Renewable Materials, Vol.11, No.12, pp. 3991-4006, 2023, DOI:10.32604/jrm.2023.029888 - 10 November 2023

    Abstract To solve the fire accidents caused by coal combustion, this work prepared four hybrid hydrogel materials using bio-based polymers, flame retardants, and inorganic materials. Compared to pure water and 3.5 wt% MgCl2 solution, the as-prepared hydrogel presents good fire prevention performance. In addition, it is found that CO and CO2 are not produced by coal when the pyrolysis temperature is lower than 200°C. During low-temperature pyrolysis, CO is more likely to be produced than CO2, indicating inadequate pyrolysis behavior. At the same time, the addition of fire-preventing hydrogel can not only decrease the maximum CO2 concentration before… More > Graphic Abstract

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

  • Open Access

    ARTICLE

    Plasticizing Effect of Camellia oleifera Seed-Oil-Based Plasticizer on PVC Material Modification

    Qinghua Lao1,#, Hui Zhang1,#, Zhihong Wang2, Puyou Jia3, Yongquan Li1,*, Qiaoguang Li4,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 3025-3041, 2023, DOI:10.32604/jrm.2023.026646 - 05 June 2023

    Abstract In this study, as the plasticizer, Camellia oleifera seed-oil-based cyclohexyl ester (COSOCE) was prepared by the reaction of cyclohexene oxide and refined C. oleifera seed oil (RCOSO) obtained by acidification hydrolysis after saponification. In addition, the structure of the target product was confirmed by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and Raman spectroscopy. COSOCE was used as plasticizer-modified polyvinyl chloride (PVC) membranes. The structure of the COSOCE-modified PVC membranes were characterized by Raman spectroscopy and scanning electron microscopy (SEM). The properties of the COSOCE-modified PVC membrane were characterized by contact angle measurements, universal… More >

  • Open Access

    ARTICLE

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

    Elham Azadeh1, Antonio Pizzi1,2,*, Christine Gerardin-Charbonnier1,*, Philippe Gerardin1

    Journal of Renewable Materials, Vol.11, No.6, pp. 2823-2848, 2023, DOI:10.32604/jrm.2023.027651 - 27 April 2023

    Abstract Non-isocyanate polyurethane (NIPU) foams from a commercial hydrolysable tannin extract, chestnut wood tannin extract, have been prepared to determine what chemical species and products are taking part in the reactions involved. This method is based on two main steps: the reaction with dimethyl carbonate and the formation of urethane bonds by further reaction of the carbonated tannin with a diamine-like hexamethylene diamine. The hydroxyl groups on the tannin polyphenols and on the carbohydrates intimately linked with it and part of a hydrolysable tannin are the groups involved in these reactions. The carbohydrate skeleton of the… More > Graphic Abstract

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its  Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

  • Open Access

    EDITORIAL

    Bio-Based Halogen-Free Flame Retardant Polymeric Materials

    Xin Wang*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1627-1629, 2023, DOI:10.32604/jrm.2023.027379 - 01 December 2022

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    MALDI ToF Investigation of the Reaction of Soy Protein Isolate with Glutaraldehyde for Wood Adhesives

    Qianyu Zhang1,2, Antonio Pizzi3, Hong Lei1,2,*, Xuedong Xi1,2,*, Ming Cao1,2, Long Cao1,2

    Journal of Renewable Materials, Vol.11, No.3, pp. 1439-1450, 2023, DOI:10.32604/jrm.2022.023535 - 31 October 2022

    Abstract Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves, reasonable price and outstanding environmental features. But their poor water resistance, low bonding strength and intolerance to mold are major drawbacks, so that proper modification before use is essential. Glutaraldehyde is one of the more apt cross-linking agents for soybean protein adhesives, which can effectively improve the bonding strength and water resistance of the adhesive. Equally, glutaraldehyde is also an efficient and broad-spectrum fungicide that can significantly improve the anti-fungal properties of a soy protein… More > Graphic Abstract

    MALDI ToF Investigation of the Reaction of Soy Protein Isolate with Glutaraldehyde for Wood Adhesives

Displaying 1-10 on page 1 of 46. Per Page