Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

    Hu Shi, Wei Cai, Xin Wang*, Lei Song, Yuan Hu*

    Journal of Renewable Materials, Vol.11, No.12, pp. 3991-4006, 2023, DOI:10.32604/jrm.2023.029888

    Abstract To solve the fire accidents caused by coal combustion, this work prepared four hybrid hydrogel materials using bio-based polymers, flame retardants, and inorganic materials. Compared to pure water and 3.5 wt% MgCl2 solution, the as-prepared hydrogel presents good fire prevention performance. In addition, it is found that CO and CO2 are not produced by coal when the pyrolysis temperature is lower than 200°C. During low-temperature pyrolysis, CO is more likely to be produced than CO2, indicating inadequate pyrolysis behavior. At the same time, the addition of fire-preventing hydrogel can not only decrease the maximum CO2 concentration before the critical temperature… More > Graphic Abstract

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

  • Open Access

    ARTICLE

    Plasticizing Effect of Camellia oleifera Seed-Oil-Based Plasticizer on PVC Material Modification

    Qinghua Lao1,#, Hui Zhang1,#, Zhihong Wang2, Puyou Jia3, Yongquan Li1,*, Qiaoguang Li4,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 3025-3041, 2023, DOI:10.32604/jrm.2023.026646

    Abstract In this study, as the plasticizer, Camellia oleifera seed-oil-based cyclohexyl ester (COSOCE) was prepared by the reaction of cyclohexene oxide and refined C. oleifera seed oil (RCOSO) obtained by acidification hydrolysis after saponification. In addition, the structure of the target product was confirmed by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and Raman spectroscopy. COSOCE was used as plasticizer-modified polyvinyl chloride (PVC) membranes. The structure of the COSOCE-modified PVC membranes were characterized by Raman spectroscopy and scanning electron microscopy (SEM). The properties of the COSOCE-modified PVC membrane were characterized by contact angle measurements, universal testing machine, thermogravimetric… More >

  • Open Access

    ARTICLE

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

    Elham Azadeh1, Antonio Pizzi1,2,*, Christine Gerardin-Charbonnier1,*, Philippe Gerardin1

    Journal of Renewable Materials, Vol.11, No.6, pp. 2823-2848, 2023, DOI:10.32604/jrm.2023.027651

    Abstract Non-isocyanate polyurethane (NIPU) foams from a commercial hydrolysable tannin extract, chestnut wood tannin extract, have been prepared to determine what chemical species and products are taking part in the reactions involved. This method is based on two main steps: the reaction with dimethyl carbonate and the formation of urethane bonds by further reaction of the carbonated tannin with a diamine-like hexamethylene diamine. The hydroxyl groups on the tannin polyphenols and on the carbohydrates intimately linked with it and part of a hydrolysable tannin are the groups involved in these reactions. The carbohydrate skeleton of the hydrolysable tannin is also able… More > Graphic Abstract

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its  Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

  • Open Access

    EDITORIAL

    Bio-Based Halogen-Free Flame Retardant Polymeric Materials

    Xin Wang*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1627-1629, 2023, DOI:10.32604/jrm.2023.027379

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    MALDI ToF Investigation of the Reaction of Soy Protein Isolate with Glutaraldehyde for Wood Adhesives

    Qianyu Zhang1,2, Antonio Pizzi3, Hong Lei1,2,*, Xuedong Xi1,2,*, Ming Cao1,2, Long Cao1,2

    Journal of Renewable Materials, Vol.11, No.3, pp. 1439-1450, 2023, DOI:10.32604/jrm.2022.023535

    Abstract Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves, reasonable price and outstanding environmental features. But their poor water resistance, low bonding strength and intolerance to mold are major drawbacks, so that proper modification before use is essential. Glutaraldehyde is one of the more apt cross-linking agents for soybean protein adhesives, which can effectively improve the bonding strength and water resistance of the adhesive. Equally, glutaraldehyde is also an efficient and broad-spectrum fungicide that can significantly improve the anti-fungal properties of a soy protein adhesive. In the work presented… More > Graphic Abstract

    MALDI ToF Investigation of the Reaction of Soy Protein Isolate with Glutaraldehyde for Wood Adhesives

  • Open Access

    ARTICLE

    High Water Resistance and Enhanced Mechanical Properties of Bio-Based Waterborne Polyurethane Enabled by in-situ Construction of Interpenetrating Polymer Network

    Henghui Deng1,2, Jingyi Lu1,2, Dunsheng Liang1,2, Xiaomin Wang1,2, Tongyao Wang1,2, Weihao Zhang1,2, Jing Wang3,*, Chaoqun Zhang1,2,*

    Journal of Renewable Materials, Vol.11, No.3, pp. 1209-1222, 2023, DOI:10.32604/jrm.2022.023371

    Abstract In this study, acrylic acid was used as a neutralizer to prepare bio-based WPU with an interpenetrating polymer network structure by thermally induced free radical emulsion polymerization. The effects of the content of acrylic acid on the properties of the resulting waterborne polyurethane-poly (acrylic acid) (WPU-PAA) dispersion and the films were systematically investigated. The results showed that the cross-linking density of the interpenetrating network polymers was increased and the interlocking structure of the soft and hard phase dislocations in the molecular segments of the double networks was tailored with increasing the content of acrylic acid, leading to enhancement of the… More > Graphic Abstract

    High Water Resistance and Enhanced Mechanical Properties of Bio-Based Waterborne Polyurethane Enabled by <i>in-situ</i> Construction of Interpenetrating Polymer Network

  • Open Access

    ARTICLE

    Fully Bio-Based Composites of Poly (Lactic Acid) Reinforced with Cellulose-Graft-Poly-(ε-Caprolactone) Copolymers

    Chengtao Gao1,2, Yang Wu3, Haibo Xie1,*

    Journal of Renewable Materials, Vol.11, No.3, pp. 1137-1152, 2023, DOI:10.32604/jrm.2022.021473

    Abstract

    Due to the increasing demand for modified polylactide (PLA) meeting “double green” criteria, the research on sustainable plasticizers for PLA has attracted broad attentions. This study reported an open-ring polymerization method to fabricate cellulose (MCC)-g-PCL (poly (ε-caprolactone)) copolymers with a fully sustainable and biodegradable component. MCC-g-PCL copolymers were synthesized, characterized, and used as green plasticizers for the PLA toughening. The results indicated that the MCC-g-PCL derivatives play an important role in the compatibility, crystallization, and toughening of the PLA/MCC-g-PCL composites. The mechanical properties of the fully bio-based PLA/MCC-g-PCL composites were optimized by adding 15 wt% MCC-g-PCL, that is, the elongation… More > Graphic Abstract

    Fully Bio-Based Composites of Poly (Lactic Acid) Reinforced with Cellulose-Graft-Poly-(ε-Caprolactone) Copolymers

  • Open Access

    ARTICLE

    Preparation of Film Based on Polyvinyl Alcohol Modified by Alkaline Starch and Lignin Fiber

    Yunxia Zhou1, Hisham Essawy2, Ai Liu1, Chenyu Yang1, Defa Hou1, Xiaojian Zhou1,*, Guanben Du1, Jun Zhang1,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 837-852, 2023, DOI:10.32604/jrm.2022.022792

    Abstract This study presents an easily prepared film based on alkaline starch-polyvinyl alcohol hybrid and lignin fiber as an additive (SPL film). The SPL film was prepared under acidic conditions through a polycondensation reaction of PVA and a mixture incorporating alkaline starch and lignin fiber from agriculture or forest source. The examination using scanning electron microscopy (SEM) showed that the surface of SPL film was smooth and the lignin fiber had good compatibility within the film hybrid. Electrospray ionization mass spectroscopy (ESI-MS) and fourier transform infrared (FTIR) investigations indicated that alkaline starch and lignin fiber reacted with PVA under acidic conditions… More > Graphic Abstract

    Preparation of Film Based on Polyvinyl Alcohol Modified by Alkaline Starch and Lignin Fiber

  • Open Access

    ARTICLE

    CO2-Responsive Smart Foams Stabilized by an Extremely Rigid Bio-Based Surfactant

    Weishan Tang, Xin Feng, Caiyun Lin, Xiaoping Rao*

    Journal of Renewable Materials, Vol.11, No.2, pp. 523-538, 2023, DOI:10.32604/jrm.2022.022809

    Abstract Environment friendly and intelligent surfactants have attracted great attention in recent years. A bio-based CO2 responsive surfactant rosin acid dimaleimide choline (R-BMI-C) with an extremely rigid skeleton was prepared using rosin and choline as raw materials by Diels-Alder addition reaction and acid-base neutralization reactions. Its structure was confirmed by IR and 1H NMR spectra. The foams’ properties of R-BMI-C could be adjusted by bubbling CO2/N2 to change the structure of the surfactant. At pH 10.4, R-BMI-C forms an unstable foam with a half-life of 1.5 h. When the pH was reduced to 7.4 by bubbling CO2, R-BMI-C forms an extremely… More > Graphic Abstract

    CO<sub>2</sub>-Responsive Smart Foams Stabilized by an Extremely Rigid Bio-Based Surfactant

  • Open Access

    REVIEW

    Bio-based Thermosetting Polymers from Vegetable Oils

    Ying Xia1, Rafael L. Quirino2, Richard C. Larock3,*

    Journal of Renewable Materials, Vol.1, No.1, pp. 3-27, 2013, DOI:10.7569/JRM.2012.634103

    Abstract Vegetable oils are promising renewable resources for polymers, due to their low cost, ready availability, and versatile applications. Recently, increasing attention has been paid to vegetable oil-based polymeric materials due to both economic and environmental concerns. This review focuses on the latest developments in vegetable oil-based thermosets prepared by a variety of polymerization methods. The thermosets obtained exhibit a wide range of thermomechanical properties from soft and fl exible rubbers to rigid and hard plastics. Some of the thermosets have properties comparable to petroleum-based analogs and show promise as replacements, providing possible solutions to environmental and energy concerns. More >

Displaying 1-10 on page 1 of 41. Per Page