Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete: Interpreting Nonlinear Synergies among Binder Components and Proportions

    Yassir M. Abbas*, Abdulaziz Alsaif*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1789-1819, 2025, DOI:10.32604/cmes.2025.073088 - 26 November 2025

    Abstract The rapid advancement of three-dimensional printed concrete (3DPC) requires intelligent and interpretable frameworks to optimize mixture design for strength, printability, and sustainability. While machine learning (ML) models have improved predictive accuracy, their limited transparency has hindered their widespread adoption in materials engineering. To overcome this barrier, this study introduces a Random Forests ensemble learning model integrated with SHapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDPs) to model and explain the compressive strength behavior of 3DPC mixtures. Unlike conventional “black-box” models, SHAP quantifies each variable’s contribution to predictions based on cooperative game theory, which enables… More >

  • Open Access

    ARTICLE

    Machine Learning and Explainable AI-Guided Design and Optimization of High-Entropy Alloys as Binder Phases for WC-Based Cemented Carbides

    Jianping Li, Wan Xiong, Tenghang Zhang, Hao Cheng, Kun Shen, Miaojin He, Yu Zhang, Junxin Song, Ying Deng*, Qiaowang Chen*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2189-2216, 2025, DOI:10.32604/cmc.2025.066128 - 03 July 2025

    Abstract Tungsten carbide-based (WC-based) cemented carbides are widely recognized as high-performance tool materials. Traditionally, single metals such as cobalt (Co) or nickel (Ni) serve as the binder phase, providing toughness and structural integrity. Replacing this phase with high-entropy alloys (HEAs) offers a promising approach to enhancing mechanical properties and addressing sustainability challenges. However, the complex multi-element composition of HEAs complicates conventional experimental design, making it difficult to explore the vast compositional space efficiently. Traditional trial-and-error methods are time-consuming, resource-intensive, and often ineffective in identifying optimal compositions. In contrast, artificial intelligence (AI)-driven approaches enable rapid screening and… More >

  • Open Access

    REVIEW

    Recent Developments in Bioadhesives and Binders

    Hong Lei1, Xiaojian Zhou2, Antonio Pizzi3,*, Guanben Du2,*, Xuedong Xi2

    Journal of Renewable Materials, Vol.13, No.2, pp. 199-249, 2025, DOI:10.32604/jrm.2025.02024-0048 - 20 February 2025

    Abstract This review is composed of three main parts each of which is written by well-known top specialists that have been, in a way or other, also the main participants of the majority of the developments reported. Thus, after a general part covering the grand lines and more in-depth views of more recent tannin, lignin, carbohydrate and soy bioadhesives, some mix of the other bio raw materials with soy protein and soy flour and some other differently sourced bioadhesives for wood, this review presents a more in-depth part on starch-based wood adhesives and a more in-depth… More > Graphic Abstract

    Recent Developments in Bioadhesives and Binders

  • Open Access

    ARTICLE

    Improvement of the Birch Outer Bark Plywood Binder: The Impact of the Bark Fractional Composition and the Binder Preparation Methodology

    Rūdolfs Bērziņš*, Aigars Pāže, Guntis Sosins, Daniela Godiņa, Laima Vēvere, Jānis Rižikovs

    Journal of Renewable Materials, Vol.12, No.12, pp. 2095-2113, 2024, DOI:10.32604/jrm.2024.056769 - 20 December 2024

    Abstract Birch outer bark (BOB) from Betula pendula Roth. is a unique and valuable biomass feedstock that contains suberin. The biopolyester suberin is built from bifunctional fatty acids-suberinic acids (SA)-which can be obtained through a depolymerization process in an alkaline medium and used as a binder due to their adhesive properties. The aim of this study was to develop the SA-containing binder and identify suitable pressing conditions to produce plywood that meets the shear strength requirements of the EN 314-2 standard 3rd moisture resistance class for bonding quality, ensuring durability in unprotected exterior conditions (shear strength ≥… More > Graphic Abstract

    Improvement of the Birch Outer Bark Plywood Binder: The Impact of the Bark Fractional Composition and the Binder Preparation Methodology

  • Open Access

    PROCEEDINGS

    Development of a High-Temperature Resistance SLS Sand Mold Process for Titanium Alloy Casting

    Shouyin Zhang1,*, Zhifeng Xu1, Qiangwei Xiao2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012141

    Abstract 3D printing sand mold has been widely used in casting production. However, there exist some problems hindering its application for titanium alloy casting, such as the large amount of gas evolution, cannot withstand high temperature impact, easy to react with titanium alloy melt, etc. This work develops a high-temperature resistance SLS (selective laser sintering) sand mold process by introducing inorganic binder in two different ways, i.e., bi-binder SLS process and SLS infiltration process. After sintering at 1100 ℃, SLS sand mold or core possesses high tensile strength and can be used for titanium alloy casting. More >

  • Open Access

    PROCEEDINGS

    High-Resolution Multi-Metal 3D Printing: A Novel Approach Using Binder Jet Printing and Selecting Laser Melting in Powder Bed Fusion

    Beng-Loon Aw1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011990

    Abstract This study introduces a novel method that combines Binder Jet Printing (BJP) and Selective Laser Melting (SLM) techniques to achieve unprecedented high-speed and high-resolution 3D printing of fine metal powders in Laser Powder Bed Fusion (LPBF). Our approach comfortably attains a resolution of 0.2 mm, enabling the selective deposition of fine powder (D50: 30 µm) made from multiple materials within a single print layer. We demonstrate the capability of this technique through the printing of a composite structure composed of copper alloy and 18Ni300 Maraging tool steel, showcasing its potential for fast-cooling tooling applications. The More >

  • Open Access

    ARTICLE

    Properties of Eco-Friendly Oriented Strand Board Produced from Oil Palm Trunk

    Ragil Widyorini1,*, Greitta Kusuma Dewi1, Arif Nuryawan2, Eddy Heraldy3, Nanang Masruchin4

    Journal of Renewable Materials, Vol.12, No.10, pp. 1757-1770, 2024, DOI:10.32604/jrm.2024.054821 - 23 October 2024

    Abstract Despite its considerable potential, oil palm trunk (OPT) remains underutilized, largely owing to the cyclical replanting process that occurs every 25–30 years. This study aimed to address this issue by developing an eco-friendly oriented strand board (OSB) using vascular bundles (VBs) from oil palm, both in binderless form and with the incorporation of natural adhesives made from sucrose and ammonium dihydrogen phosphate (ADP). The VB was extracted from OPT using a pressure cooker and mixed with a sucrose-ADP solution at various ratios. The mixture was then pressed at temperatures of 180°C and 200°C for 10… More > Graphic Abstract

    Properties of Eco-Friendly Oriented Strand Board Produced from Oil Palm Trunk

  • Open Access

    ARTICLE

    BArcherFuzzer: An Android System Services Fuzzier via Transaction Dependencies of BpBinder

    Jiawei Qin1,2, Hua Zhang1,*, Hanbing Yan2, Tian Zhu2, Song Hu1, Dingyu Yan2

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 527-544, 2024, DOI:10.32604/iasc.2024.047509 - 11 July 2024

    Abstract By the analysis of vulnerabilities of Android native system services, we find that some vulnerabilities are caused by inconsistent data transmission and inconsistent data processing logic between client and server. The existing research cannot find the above two types of vulnerabilities and the test cases of them face the problem of low coverage. In this paper, we propose an extraction method of test cases based on the native system services of the client and design a case construction method that supports multi-parameter mutation based on genetic algorithm and priority strategy. Based on the above method, More >

  • Open Access

    ARTICLE

    Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF)-Mass Spectrometry and 13C-NMR-Identified New Compounds in Paraberlinia bifoliolata (Ekop-Beli) Bark Tannins

    Liliane Nga1, Benoit Ndiwe1,2, Achille Bernard Biwolé1, Antonio Pizzi3,*, Jean Jalin Eyinga Biwole1, Joseph Zobo Mfomo1

    Journal of Renewable Materials, Vol.12, No.3, pp. 553-568, 2024, DOI:10.32604/jrm.2023.046568 - 11 April 2024

    Abstract Extracts of plant origin, particularly tannins, are attracting growing interest for the sustainable development of materials in the industrial sector. The discovery of new tannins is therefore necessary. The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance (13C NMR). The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined, as was the mechanical strength of the resin hardened with Acacia nilotica extracts. Yield by successive water extraction was 35%. MALDI-TOF/MS… More >

  • Open Access

    ARTICLE

    CoS Nanosheets Coated with Dopamine-Derived Carbon Standing on Carbon Fiber Cloth as Binder-Free Anode for Li-ion Batteries

    Lianyuan Ji1, Mingchen Shi1, Zengkai Feng2, Hui Yang1,*

    Journal of Renewable Materials, Vol.12, No.2, pp. 259-274, 2024, DOI:10.32604/jrm.2023.030599 - 11 March 2024

    Abstract

    Cobalt sulphides attract much attention as anode materials for Li-ion batteries (LIBs). However, its poor conductivity, low initial column efficiency and large volume changes during cycling have hindered its further development. Herein, novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth (CFC) by two hydrothermal reactions followed with carbon coating via carbonizing dopamine (CoS NS@C/CFC). As a freestanding anode, the nanosheet structure of CoS not only accommodates the volume variation, but also provides a large interface area to proceed the charge transfer reaction. In addition, CFC works as both a three-dimensional skeleton and an

    More >

Displaying 1-10 on page 1 of 28. Per Page