Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Modeling of Leachate Propagation in a Municipal Solid Waste Landfill Foundation

    Nadezhda Zubova*, Andrey Ivantsov

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1407-1424, 2024, DOI:10.32604/fdmp.2024.051130 - 27 June 2024

    Abstract The study deals with the numerical modeling of leachate distribution in the porous medium located under a municipal solid waste disposal landfill (MSWLF). The considered three-layer system is based on geological data obtained from field measurements. For simplicity, the problem is investigated by assuming a two-component approach. Nevertheless, the heat produced by landfills due to biological and chemical processes and the thermal diffusion mechanism contributing to pollution transport are taken into account. The numerical modeling of the propagation of leachate in the considered layered porous medium is implemented for parameters corresponding to natural soil and More >

  • Open Access

    REVIEW

    A Review on the Evaporation Dynamics of Sessile Drops of Binary Mixtures: Challenges and Opportunities

    Pradeep Gurrala1, Saravanan Balusamy1, Sayak Banerjee1, Kirti Chandra Sahu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 253-284, 2021, DOI:10.32604/fdmp.2021.014126 - 02 April 2021

    Abstract The wetting and evaporation dynamics of sessile droplets have gained considerable attention over the last few years due to their relevance to many practical applications, ranging from a variety of industrial problems to several biological systems. Droplets made of binary mixtures typically undergo complex dynamics due to the differential volatility of the considered components and the ensuing presence of thermocapillary effects. For these reasons, many research groups have focused on the evaporation of binary droplets using a variegated set of experimental, numerical, and purely theoretical approaches. Apart from reviewing the state-of-the-art about the existing experimental, More >

  • Open Access

    ARTICLE

    THERMAL CONDUCTIVITY OF BINARY MIXTURES OF GASES

    Etim S. Udoetok*

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-5, 2013, DOI:10.5098/hmt.v4.2.3008

    Abstract A model for the coefficient of thermal conductivity of binary mixtures of gases has been derived. The theory presented is based on the assumption of random fluctuations between two possible extreme arrangements of a binary gas mixture. The results obtained from the new model compared favorably with published experimental results. The proposed new model provides a simple approach without sacrificing much accuracy compared to previous models. It is applicable to any binary mixture of gases which includes monoatomic gas mixture, polyatomic gas mixtures and mixtures involving rare gases. The new model can be very useful More >

  • Open Access

    ARTICLE

    Quasi Steady State Effect of Micro Vibration from Two Space Vehicles on Mixture During Thermodiffusion Experiment

    A.H. Ahadi1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 397-422, 2012, DOI:10.3970/fdmp.2012.008.397

    Abstract The numerical simulations of a thermodiffusion experiment in atmospheric pressure binary mixtures of water and isopropanol subject to micro-vibrations at reduced gravity are presented. The vibrations are induced on board ISS and FOTON-M3 due to many different reasons like crew activity, spacecraft docking or operating other experiments, etc. The effects of micro-gravity vibration were investigated in detail on all of the mixture properties. The influences of different cavity sizes as well as different signs of Soret coefficients in the solvent were considered. In this paper, the thermodiffusion experiment was subjected to two different g-jitter vibrations… More >

  • Open Access

    ARTICLE

    Fluid Flow Behavior of a Binary Mixture Under the Influence of External Disturbances Using Different Density Models

    A. Parsa1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.1, pp. 27-50, 2012, DOI:10.3970/fdmp.2011.008.027

    Abstract Experiments onboard the International Space Station typically display undesired convective flow as a results of unwanted oscillatory g-jitters. A cubic rigid cell filled with water (90%) and isopropanol (10%) with a thermal gradient and forced vibrations is considered. The cell is under the influence of three different levels of periodic oscillation (Ravib ≈ 1.6, 650 and 4000) applied perpendicular to the temperature gradient. In this paper, we examine the transport process (fluid flow, heat transfer and mass transfer) due to oscillatory g-jitters in the presence of Soret effect. The full transient Navier Stokes equations coupled with More >

  • Open Access

    ARTICLE

    PREDICTION OF BINARY MIXTURE BOILING HEAT TRANSFER IN SYSTEMS WITH STRONG MARANGONI EFFECTS

    Kenneth M. Armijo, Van P. Carey*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-6, 2010, DOI:10.5098/hmt.v1.2.3003

    Abstract This paper investigates the impact of Marangoni phenomena for low concentrations of 2-propanol/water and methanol/water mixtures. In real systems the addition of small levels of surface-active contaminants can affect the surface tension of the liquid-vapor interface and thermodynamic conditions in this region. Analysis was performed for three widely accepted binary mixture correlations to predict heat flux and superheat values for subatmospheric experimental data using bulk fluid and film thermodynamic properties. Due to the non-ideal nature of these alcohol/water mixtures, this study also employs an average pseudo single-component (PSC) coefficient in place of an ideal heat… More >

Displaying 1-10 on page 1 of 6. Per Page