Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Diabetic Retinopathy Detection: A Hybrid Intelligent Approach

    Atta Rahman1,*, Mustafa Youldash2, Ghaida Alshammari2, Abrar Sebiany2, Joury Alzayat2, Manar Alsayed2, Mona Alqahtani2, Noor Aljishi2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4561-4576, 2024, DOI:10.32604/cmc.2024.055106 - 12 September 2024

    Abstract Diabetes is a serious health condition that can cause several issues in human body organs such as the heart and kidney as well as a serious eye disease called diabetic retinopathy (DR). Early detection and treatment are crucial to prevent complete blindness or partial vision loss. Traditional detection methods, which involve ophthalmologists examining retinal fundus images, are subjective, expensive, and time-consuming. Therefore, this study employs artificial intelligence (AI) technology to perform faster and more accurate binary classifications and determine the presence of DR. In this regard, we employed three promising machine learning models namely, support… More >

  • Open Access

    ARTICLE

    Quantum Fuzzy Support Vector Machine for Binary Classification

    Xi Huang1,2, Shibin Zhang1,2,*, Chen Lin1,2, Jinyue Xia3

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2783-2794, 2023, DOI:10.32604/csse.2023.032190 - 21 December 2022

    Abstract In the objective world, how to deal with the complexity and uncertainty of big data efficiently and accurately has become the premise and key to machine learning. Fuzzy support vector machine (FSVM) not only deals with the classification problems for training samples with fuzzy information, but also assigns a fuzzy membership degree to each training sample, allowing different training samples to contribute differently in predicting an optimal hyperplane to separate two classes with maximum margin, reducing the effect of outliers and noise, Quantum computing has super parallel computing capabilities and holds the promise of faster… More >

  • Open Access

    ARTICLE

    Hybrid Models for Breast Cancer Detection via Transfer Learning Technique

    Sukhendra Singh1, Sur Singh Rawat, Manoj Gupta3, B. K. Tripathi4, Faisal Alanazi5, Arnab Majumdar6, Pattaraporn Khuwuthyakorn7, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3063-3083, 2023, DOI:10.32604/cmc.2023.032363 - 31 October 2022

    Abstract Currently, breast cancer has been a major cause of deaths in women worldwide and the World Health Organization (WHO) has confirmed this. The severity of this disease can be minimized to the large extend, if it is diagnosed properly at an early stage of the disease. Therefore, the proper treatment of a patient having cancer can be processed in better way, if it can be diagnosed properly as early as possible using the better algorithms. Moreover, it has been currently observed that the deep neural networks have delivered remarkable performance for detecting cancer in histopathological… More >

  • Open Access

    ARTICLE

    Regulatory Genes Through Robust-SNR for Binary Classification Within Functional Genomics Experiments

    Muhammad Hamraz1, Dost Muhammad Khan1, Naz Gul1, Amjad Ali1, Zardad Khan1, Shafiq Ahmad2, Mejdal Alqahtani2, Akber Abid Gardezi3, Muhammad Shafiq4,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3663-3677, 2023, DOI:10.32604/cmc.2023.030064 - 31 October 2022

    Abstract The current study proposes a novel technique for feature selection by inculcating robustness in the conventional Signal to noise Ratio (SNR). The proposed method utilizes the robust measures of location i.e., the “Median” as well as the measures of variation i.e., “Median absolute deviation (MAD) and Interquartile range (IQR)” in the SNR. By this way, two independent robust signal-to-noise ratios have been proposed. The proposed method selects the most informative genes/features by combining the minimum subset of genes or features obtained via the greedy search approach with top-ranked genes selected through the robust signal-to-noise ratio (RSNR).… More >

  • Open Access

    ARTICLE

    Investigation of Single and Multiple Mutations Prediction Using Binary Classification Approach

    T. Edwin Ponraj1,*, J. Charles2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1189-1203, 2023, DOI:10.32604/iasc.2023.033383 - 29 September 2022

    Abstract The mutation is a critical element in determining the proteins’ stability, becoming a core element in portraying the effects of a drug in the pharmaceutical industry. Doing wet laboratory tests to provide a better perspective on protein mutations is expensive and time-intensive since there are so many potential mutations, computational approaches that can reliably anticipate the consequences of amino acid mutations are critical. This work presents a robust methodology to analyze and identify the effects of mutation on a single protein structure. Initially, the context in a collection of words is determined using a knowledge More >

  • Open Access

    ARTICLE

    Improving Intrusion Detection in UAV Communication Using an LSTM-SMOTE Classification Method

    Abdulrahman M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal of Cyber Security, Vol.4, No.4, pp. 287-298, 2022, DOI:10.32604/jcs.2023.042486 - 10 August 2023

    Abstract Unmanned Aerial Vehicles (UAVs) proliferate quickly and play a significant part in crucial tasks, so it is important to protect the security and integrity of UAV communication channels. Intrusion Detection Systems (IDSs) are required to protect the UAV communication infrastructure from unauthorized access and harmful actions. In this paper, we examine a new approach for enhancing intrusion detection in UAV communication channels by utilizing the Long Short-Term Memory network (LSTM) combined with the Synthetic Minority Oversampling Technique (SMOTE) algorithm, and this integration is the binary classification method (LSTM-SMOTE). We successfully achieved 99.83% detection accuracy by More >

  • Open Access

    ARTICLE

    Prediction of COVID-19 Cases Using Machine Learning for Effective Public Health Management

    Fahad Ahmad1,*, Saleh N. Almuayqil2, Mamoona Humayun2, Shahid Naseem3, Wasim Ahmad Khan4, Kashaf Junaid5

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2265-2282, 2021, DOI:10.32604/cmc.2021.013067 - 28 December 2020

    Abstract COVID-19 is a pandemic that has affected nearly every country in the world. At present, sustainable development in the area of public health is considered vital to securing a promising and prosperous future for humans. However, widespread diseases, such as COVID-19, create numerous challenges to this goal, and some of those challenges are not yet defined. In this study, a Shallow Single-Layer Perceptron Neural Network (SSLPNN) and Gaussian Process Regression (GPR) model were used for the classification and prediction of confirmed COVID-19 cases in five geographically distributed regions of Asia with diverse settings and environmental… More >

Displaying 1-10 on page 1 of 7. Per Page