Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on Combinatorial Neural Networks

    Tusongjiang Kari1, Sun Guoliang2, Lei Kesong1, Ma Xiaojing1,*, Wu Xian1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1437-1452, 2023, DOI:10.32604/iasc.2023.037012 - 21 June 2023

    Abstract Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation. Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections. For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model, the short-term prediction of wind power based on a combined neural network is proposed. First, the Bi-directional Long Short Term Memory (BiLSTM) network prediction model is constructed, and the bi-directional nature of the BiLSTM network is used… More >

  • Open Access

    ARTICLE

    Enhanced Deep Learning for Detecting Suspicious Fall Event in Video Data

    Madhuri Agrawal*, Shikha Agrawal

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2653-2667, 2023, DOI:10.32604/iasc.2023.033493 - 15 March 2023

    Abstract

    Suspicious fall events are particularly significant hazards for the safety of patients and elders. Recently, suspicious fall event detection has become a robust research case in real-time monitoring. This paper aims to detect suspicious fall events during video monitoring of multiple people in different moving backgrounds in an indoor environment; it is further proposed to use a deep learning method known as Long Short Term Memory (LSTM) by introducing visual attention-guided mechanism along with a bi-directional LSTM model. This method contributes essential information on the temporal and spatial locations of ‘suspicious fall’ events in learning the

    More >

  • Open Access

    ARTICLE

    Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features

    Siva Sankari Subbiah1, Senthil Kumar Paramasivan2,*, Karmel Arockiasamy3, Saminathan Senthivel4, Muthamilselvan Thangavel2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3829-3844, 2023, DOI:10.32604/iasc.2023.030480 - 17 August 2022

    Abstract Wind speed forecasting is important for wind energy forecasting. In the modern era, the increase in energy demand can be managed effectively by forecasting the wind speed accurately. The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty, the curse of dimensionality, overfitting and non-linearity issues. The curse of dimensionality and overfitting issues are handled by using Boruta feature selection. The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory (Bi-LSTM). In this paper, Bi-LSTM with Boruta feature… More >

  • Open Access

    ARTICLE

    Routing with Cooperative Nodes Using Improved Learning Approaches

    R. Raja1,*, N. Satheesh2, J. Britto Dennis3, C. Raghavendra4

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2857-2874, 2023, DOI:10.32604/iasc.2023.026153 - 17 August 2022

    Abstract In IoT, routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance. The evaluation of optimal routing and related routing parameters over the deployed network environment is challenging. This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory (s − LSTM) and Bi-directional Long Short Term Memory (b − LSTM). It is used to hold the routing information and random routing to attain superior performance. The proposed model is trained based on the searching and detection mechanisms to compute the packet delivery ratio (PDR), end-to-end (E2E) delay, throughput,… More >

  • Open Access

    ARTICLE

    Covid-19 CT Lung Image Segmentation Using Adaptive Donkey and Smuggler Optimization Algorithm

    P. Prabu1, K. Venkatachalam2, Ala Saleh Alluhaidan3,*, Radwa Marzouk4, Myriam Hadjouni5, Sahar A. El_Rahman5,6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1133-1152, 2022, DOI:10.32604/cmc.2022.020919 - 03 November 2021

    Abstract COVID’19 has caused the entire universe to be in existential health crisis by spreading globally in the year 2020. The lungs infection is detected in Computed Tomography (CT) images which provide the best way to increase the existing healthcare schemes in preventing the deadly virus. Nevertheless, separating the infected areas in CT images faces various issues such as low-intensity difference among normal and infectious tissue and high changes in the characteristics of the infection. To resolve these issues, a new inf-Net (Lung Infection Segmentation Deep Network) is designed for detecting the affected areas from the… More >

Displaying 1-10 on page 1 of 5. Per Page