Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    REVIEW

    Monocular 3D Human Pose Estimation for REBA Ergonomics: A Critical Review of Recent Advances

    Ahmad Mwfaq Bataineh1,2,*, Ahmad Sufril Azlan Mohamed1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 93-124, 2025, DOI:10.32604/cmc.2025.064250 - 09 June 2025

    Abstract Advancements in deep learning have considerably enhanced techniques for Rapid Entire Body Assessment (REBA) pose estimation by leveraging progress in three-dimensional human modeling. This survey provides an extensive overview of recent advancements, particularly emphasizing monocular image-based methodologies and their incorporation into ergonomic risk assessment frameworks. By reviewing literature from 2016 to 2024, this study offers a current and comprehensive analysis of techniques, existing challenges, and emerging trends in three-dimensional human pose estimation. In contrast to traditional reviews organized by learning paradigms, this survey examines how three-dimensional pose estimation is effectively utilized within musculoskeletal disorder (MSD)… More >

  • Open Access

    ARTICLE

    A Universal Activation Function for Deep Learning

    Seung-Yeon Hwang1, Jeong-Joon Kim2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3553-3569, 2023, DOI:10.32604/cmc.2023.037028 - 31 March 2023

    Abstract Recently, deep learning has achieved remarkable results in fields that require human cognitive ability, learning ability, and reasoning ability. Activation functions are very important because they provide the ability of artificial neural networks to learn complex patterns through nonlinearity. Various activation functions are being studied to solve problems such as vanishing gradients and dying nodes that may occur in the deep learning process. However, it takes a lot of time and effort for researchers to use the existing activation function in their research. Therefore, in this paper, we propose a universal activation function (UA) so… More >

  • Open Access

    ARTICLE

    Hybrid Dipper Throated and Grey Wolf Optimization for Feature Selection Applied to Life Benchmark Datasets

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2,3, Faten Khalid Karim1,*, Mostafa Abotaleb4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7, D. L. Elsheweikh8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4531-4545, 2023, DOI:10.32604/cmc.2023.033042 - 31 October 2022

    Abstract Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine learning. Each feature in a dataset has 2n possible subsets, making it challenging to select the optimum collection of features using typical methods. As a result, a new metaheuristics-based feature selection method based on the dipper-throated and grey-wolf optimization (DTO-GW) algorithms has been developed in this research. Instability can result when the selection of features is subject to metaheuristics, which can lead to a wide range of results. Thus, we adopted hybrid optimization in our method of… More >

  • Open Access

    ARTICLE

    Novel Optimized Feature Selection Using Metaheuristics Applied to Physical Benchmark Datasets

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2, Fadwa Alrowais1,*, Sunil Kumar3, Abdelhameed Ibrahim4, Abdelaziz A. Abdelhamid5,6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4027-4041, 2023, DOI:10.32604/cmc.2023.033039 - 31 October 2022

    Abstract In data mining and machine learning, feature selection is a critical part of the process of selecting the optimal subset of features based on the target data. There are 2n potential feature subsets for every n features in a dataset, making it difficult to pick the best set of features using standard approaches. Consequently, in this research, a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm (ASSOA) has been proposed. When using metaheuristics to pick features, it is common for the selection of features to vary across runs, which can lead… More >

Displaying 1-10 on page 1 of 4. Per Page