Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    BCCLR: A Skeleton-Based Action Recognition with Graph Convolutional Network Combining Behavior Dependence and Context Clues

    Yunhe Wang1, Yuxin Xia2, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4489-4507, 2024, DOI:10.32604/cmc.2024.048813 - 26 March 2024

    Abstract In recent years, skeleton-based action recognition has made great achievements in Computer Vision. A graph convolutional network (GCN) is effective for action recognition, modelling the human skeleton as a spatio-temporal graph. Most GCNs define the graph topology by physical relations of the human joints. However, this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs, resulting in a low recognition rate for specific actions with implicit correlation between joint pairs. In addition, existing methods ignore the trend correlation between adjacent frames within an action… More >

Displaying 1-10 on page 1 of 1. Per Page