Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (224)
  • Open Access

    ARTICLE

    Life-Cycle Bearing Capacity for Pre-Stressed T-beams Based on Full-Scale Destructive Test

    Yushan Ye1, Tao Gao1, Liankun Wang2, Junjie Ma2, Yingchun Cai2, Heng Liu2,*, Xiaoge Liu2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 145-166, 2025, DOI:10.32604/sdhm.2024.053756 - 15 November 2024

    Abstract To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams, destructive tests were conducted on full-scale pre-stressed concrete beams. Based on the measurement and analysis of beam deflection, strain, and crack development under various loading levels during the research tests, combined with the verification coefficient indicators specified in the codes, the verification coefficients of bridges at different stages of damage can be examined. The results indicate that the T-beams experience complete, incomplete linear, and… More >

  • Open Access

    ARTICLE

    Bending Stiffness of Concrete-Filled Steel Tube and Its Influence on Concrete Placement Timing of Composite Beam-String Structure

    Zhenyu Zhang1, Quan Jin1, Haitao Zhang1, Zhao Liu1, Yuyang Wu2, Longfei Zhang2, Renzhang Yan2,*

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 167-191, 2025, DOI:10.32604/sdhm.2024.053190 - 15 November 2024

    Abstract When the upper chord beam of the beam-string structure (BSS) is made of concrete-filled steel tube (CFST), its overall stiffness will change greatly with the construction of concrete placement, which will have an impact on the design of the tensioning plans and selection of control measures for the BSS. In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during construction, the influence of some factors such as height-width ratio, wall thickness of steel tube, elasticity modulus of concrete, and friction coefficient on More >

  • Open Access

    PROCEEDINGS

    Microstructure Refinement for Superior Ductility of Al–Si Alloy by Electron Beam Melting Additive Manufacturing

    Huakang Bian1,3,*, Yufan Zhao2,3, Akihiko Chiba3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012491

    Abstract Refining the Si phase in Al‒Si alloy has been a research interest for decades. Previous studies suggested many Al- and Si-enriched nano-segments (approximately 100 nm) can coexist in a melted Al–Si liquid solution when they were reheated to a temperature between 1080 and 1290 °C. These nano-segments could be retained to become crystal nuclei and grew into fine grains under a very fast cooling rate. Thus, this provides a novel approach of refining the microstructure of Al–Si alloy using electron beam melting (EBM) technology because the temperature exceeds 1500 °C in the melting pool with… More >

  • Open Access

    PROCEEDINGS

    High-Rate Multiaxial Behaviour of Electron Beam Melted Ti-6Al-2Sn-4Zr-2Mo: An Experimental Study Using a Novel Tension-Torsion Hopkinson Bar Apparatus

    Yuan Xu1,*, Govind Gour2, Manuela Galati3, Abdollah Saboori3, Antonio Pellegrino4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013220

    Abstract The dynamic behaviour of Ti-6Al-2Sn-4Zr-2Mo additively manufactured by electron beam melting (EBM) is presented in this study considering synchronised tension-torsion loading. A bespoke spilt Hopkinson Tension-Torsion bar is used to generate combined tensile and torsional stress pulses that interact simultaneously with a novel specimen geometry. High-speed digital imaging correlation techniques are employed to assess the high-rate deformation and crack propagation of the specimen. The material's dynamic response was analysed across a spectrum of stress states, including uniaxial tension, shear, and combinations of tension and shear at strain rates ranging between 500 s-1 and 2000 s-1. Comparable More >

  • Open Access

    PROCEEDINGS

    Quantum Computing in Computational Mechanics: A New Frontier for Finite Element Method

    Dingjie Lu1, Zhao Wang1, Jun Liu1, Yangfan Li1, Wei-Bin Ewe1, Liu Zhuangjian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.010961

    Abstract This study heralds a new era in computational mechanics through the integration of Quantum Computing with the Finite Element Method (FEM), representing a quantum leap forward in addressing complex engineering simulations. Our approach utilizes Variational Quantum Algorithms (VQAs) to tackle challenges that have been traditionally well-solved on classical computers yet pose significant obstacles in the quantum computing domain. This innovation not only surmounts these challenges but also extends the applicability of quantum computing to real-world engineering problems, moving beyond mere conceptual demonstrations of quantum computing in numerical methods. The development of a novel strategy for… More >

  • Open Access

    ARTICLE

    V2I Physical Layer Security Beamforming with Antenna Hardware Impairments under RIS Assistance

    Zerong Tang, Tiecheng Song*, Jing Hu

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1835-1854, 2024, DOI:10.32604/cmc.2024.056983 - 15 October 2024

    Abstract The Internet of Vehicles (IoV) will carry a large amount of security and privacy-related data, which makes the secure communication between the IoV terminals increasingly critical. This paper studies the joint beamforming for physical-layer security transmission in the coexistence of Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication with Reconfigurable Intelligent Surface (RIS) assistance, taking into account hardware impairments. A communication model for physical-layer security transmission is established when the eavesdropping user is present and the base station antenna has hardware impairments assisted by RIS. Based on this model, we propose to maximize the V2I physical-layer security… More >

  • Open Access

    PROCEEDINGS

    Bending Collapse of Easily Fabricated Single- and Multi-Cell Arched Beams

    Xiong Zhang1,2,*, Jinkang Xiong1, Xinrong Fu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011760

    Abstract Thin-walled beams are widely applied as energy-absorbing components in industrial products to meet the requirements of passive safety. Researchers have tried various approaches to improve the energy absorption efficiency of them. Recently, adopting arched beams was proposed by researchers to improve the crashworthiness of beams under transverse loads. Arched beams can switch the transverse forces to axial forces and were reported to show very much better crashworthiness performances than straight beams.
    Although adopting arched beams is an effective way to improve the performance of beams under transverse loads, the fabrication of arched beams is more… More >

  • Open Access

    PROCEEDINGS

    Theoretical Study on the Bending Collapse of Multi-Cell Thin-Walled Rectangular Beams

    Xinrong Fu1, Xiong Zhang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011748

    Abstract Thin-walled beams with various cross-sectional shapes were widely applied in automobiles or other large-volume industrial products. Researchers have tried different methods to improve their crashworthiness performances and predict the collapse responses of the beams under various loads. Multi-cell thin-walled beams were reported to show excellent energy absorption efficiency and crashworthiness performances under many load conditions. Up to now, theoretical analyses on the axial crushing of multi-cell beams have attracted extensive attentions, and significant progress has been made in predicting the energy absorption of multi-cell beams with various sections. However, the theoretical analysis on the bending… More >

  • Open Access

    PROCEEDINGS

    Mechanics Model of Face-Core and Inner Core Debonding of Composite Honeycomb Sandwich Structures

    Jian Xiong1,*, Pengcheng Xue1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-3, 2024, DOI:10.32604/icces.2024.011785

    Abstract Carbon fiber-reinforced plastic (CFRP) composite sandwich structures, due to their excellent mechanical properties and lightweight characteristics, are widely used in aerospace, marine, automotive, and wind turbine blade structures [1]. Different from traditional sandwich structures, composite honeycomb sandwich structures exhibit brittle properties, potentially leading to sudden and catastrophic debonding failure without any warning. Consequently, the interfaces between the face-core and the inner core may become the weakest parts of the structural system.
    This paper presents a theoretical and experimental investigation into the debonding behavior of the face-core and inner core in composite honeycomb sandwich structures. Based on… More >

  • Open Access

    ARTICLE

    A New Isogeometric Finite Element Method for Analyzing Structures

    Pan Su1, Jiaxing Chen2, Ronggang Yang2, Jiawei Xiang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1883-1905, 2024, DOI:10.32604/cmes.2024.055942 - 27 September 2024

    Abstract High-performance finite element research has always been a major focus of finite element method studies. This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method. Firstly, the physical field is approximated by uniform B-spline interpolation, while geometry is represented by non-uniform rational B-spline interpolation. By introducing a transformation matrix, elements of types C0 and C1 are constructed in the isogeometric finite element method. Subsequently, the corresponding calculation formats for one-dimensional bars, beams, and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and… More >

Displaying 1-10 on page 1 of 224. Per Page