Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    PROCEEDINGS

    Three-Dimensional Discrete Element Simulation of Electrode Structural Evolutions in Lithium-Ion Batteries During Drying and Calendering

    Yuhang Lyu1, Shaohai Dong1, Li Ting Gao1, Zhan-Sheng Guo1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012815

    Abstract Drying and calendering processes are crucial in electrode manufacturing, as they significantly affect the mechanical and electrochemical performances of lithium-ion batteries. In this study, we established a three-dimensional (3D) representative volume element (RVE) of electrodes composed of active material particles, carbon binder domain particles, solvent, and different particle contact types. We continuously simulated the 3D macroscopic and microscopic structural evolutions of the RVE during drying and calendering using the discrete element method (DEM). Based on the evolution of the particle coordination numbers and contact networks during drying, we propose a three-stage-drying scheme, consistent with the More >

  • Open Access

    ARTICLE

    SOH Estimation of Lithium Batteries Based on ICA and WOA-RBF Algorithm

    Qi Wang1,2,3, Yandong Gu1,*, Tao Zhu1, Lantian Ge1, Yibo Huang1

    Energy Engineering, Vol.121, No.11, pp. 3221-3239, 2024, DOI:10.32604/ee.2024.053758 - 21 October 2024

    Abstract Accurately estimating the State of Health (SOH) of batteries is of great significance for the stable operation and safety of lithium batteries. This article proposes a method based on the combination of Capacity Incremental Curve Analysis (ICA) and Whale Optimization Algorithm-Radial Basis Function (WOA-RBF) neural network algorithm to address the issues of low accuracy and slow convergence speed in estimating State of Health of batteries. Firstly, preprocess the battery data to obtain the real battery SOH curve and Capacity-Voltage (Q-V) curve, convert the Q-V curve into an IC curve and denoise it, analyze the parameters… More >

  • Open Access

    ARTICLE

    A Joint Estimation Method of SOC and SOH for Lithium-ion Battery Considering Cyber-Attacks Based on GA-BP

    Tianqing Yuan1,2, Na Li1,2, Hao Sun3, Sen Tan4,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4497-4512, 2024, DOI:10.32604/cmc.2024.056061 - 12 September 2024

    Abstract To improve the estimation accuracy of state of charge (SOC) and state of health (SOH) for lithium-ion batteries, in this paper, a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm (GA) combined with back propagation (BP) neural network is proposed, the research addresses the issue of data manipulation resulting from cyber-attacks. Firstly, anomalous data stemming from cyber-attacks are identified and eliminated using the isolated forest algorithm, followed by data restoration. Secondly, the incremental capacity (IC) curve is derived from the restored data using the Kalman filtering algorithm, with… More >

  • Open Access

    ARTICLE

    Plasma Surface Modification of Li2TiSiO5 Anode for Lithium-Ion Batteries

    Shangqi Sun1,2,3,*, Lingchao Xiao3, Qifeng Qian3, Yunfeng Deng1

    Energy Engineering, Vol.121, No.10, pp. 2769-2776, 2024, DOI:10.32604/ee.2024.052680 - 11 September 2024

    Abstract Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li2TiSiO5. In this study, Li2TiSiO5 is synthesized by the sol-gel method, and the surface modification of Li2TiSiO5 is carried out at different temperatures using low-temperature plasma to enhance its lithium storage performance. The morphological structure and electrochemical tests demonstrate that plasma treatment can improve the degree of agglomeration. The peak position of the plasma-treated Li2TiSiO5 is shifted to a lower angle, and the shift angle increases with increasing sputtering power. Li2TiSiO5 after 300 W bombardment shows excellent capacity (144.7 mA·hg−1 More >

  • Open Access

    ARTICLE

    A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples

    Miao Li, Fanyong Cheng*, Jiong Yang, Maxwell Mensah Duodu, Hao Tu

    Energy Engineering, Vol.121, No.9, pp. 2543-2568, 2024, DOI:10.32604/ee.2024.051231 - 19 August 2024

    Abstract Accurate and reliable fault detection is essential for the safe operation of electric vehicles. Support vector data description (SVDD) has been widely used in the field of fault detection. However, constructing the hypersphere boundary only describes the distribution of unlabeled samples, while the distribution of faulty samples cannot be effectively described and easily misses detecting faulty data due to the imbalance of sample distribution. Meanwhile, selecting parameters is critical to the detection performance, and empirical parameterization is generally time-consuming and laborious and may not result in finding the optimal parameters. Therefore, this paper proposes a… More >

  • Open Access

    EDITORIAL

    Key Issues for Modelling, Operation, Management and Diagnosis of Lithium Batteries: Current States and Prospects

    Bo Yang1,*, Yucun Qian1, Jianzhong Xu2, Yaxing Ren3, Yixuan Chen4

    Energy Engineering, Vol.121, No.8, pp. 2085-2091, 2024, DOI:10.32604/ee.2024.050083 - 19 July 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Effect of Heatpipe Array Condenser Section Length on Thermal Cooling of Li-Ion Batteries

    Olanrewaju M. Oyewola1,*, Olawale S. Ismail2, Adetokunbo A. Awonusi2

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 475-490, 2024, DOI:10.32604/fhmt.2024.047714 - 20 May 2024

    Abstract One of the new methods for ensuring that the battery in a thermal energy storage system is kept at the proper temperature is the heat pipe-based Thermal Management System (TMS). In this study, the improvement of cooling performance of a heat pipe based TMS is examined through the variation of condenser section length of heat pipes in an array. The TMSs with an array of heat pipes with different condenser section lengths are considered. The system performances are evaluated using a validated numerical method. The results show that a heat pipe-based TMS provides the best More >

  • Open Access

    ARTICLE

    CoS Nanosheets Coated with Dopamine-Derived Carbon Standing on Carbon Fiber Cloth as Binder-Free Anode for Li-ion Batteries

    Lianyuan Ji1, Mingchen Shi1, Zengkai Feng2, Hui Yang1,*

    Journal of Renewable Materials, Vol.12, No.2, pp. 259-274, 2024, DOI:10.32604/jrm.2023.030599 - 11 March 2024

    Abstract

    Cobalt sulphides attract much attention as anode materials for Li-ion batteries (LIBs). However, its poor conductivity, low initial column efficiency and large volume changes during cycling have hindered its further development. Herein, novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth (CFC) by two hydrothermal reactions followed with carbon coating via carbonizing dopamine (CoS NS@C/CFC). As a freestanding anode, the nanosheet structure of CoS not only accommodates the volume variation, but also provides a large interface area to proceed the charge transfer reaction. In addition, CFC works as both a three-dimensional skeleton and an

    More >

  • Open Access

    PROCEEDINGS

    Chemo-Mechanical Peridynamic Simulation of Dynamic Fracture-Pattern Formation in Lithium-Ion Batteries

    Xiaofei Wang1, Qi Tong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09181

    Abstract Mechanical failure due to lithium-ion diffusion is one of the main obstacles to fulfill the potential of the electrode materials. Various fracture patterns in different electrode structures are observed in practice, which may have a profound impact on the performance and the service life of electrodes during operation. However, the mechanisms are largely unclear and still lack systematic understanding. Here we propose a coupled chemo-mechanical model based on peridynamics [1] and use it to study the dynamic fracturepattern formation in electrode materials and solid electrolytes during lithiation/delithiation cycles. We found in hollow core-shell nanowires that More >

  • Open Access

    ARTICLE

    Analysis of Capacity Decay, Impedance, and Heat Generation of Lithium-ion Batteries Experiencing Multiple Simultaneous Abuse Conditions

    Casey Jones, Meghana Sudarshan, Vikas Tomar*

    Energy Engineering, Vol.120, No.12, pp. 2721-2740, 2023, DOI:10.32604/ee.2023.043219 - 29 November 2023

    Abstract Abuse of Lithium-ion batteries, both physical and electrochemical, can lead to significantly reduced operational capabilities. In some instances, abuse can cause catastrophic failure, including thermal runaway, combustion, and explosion. Many different test standards that include abuse conditions have been developed, but these generally consider only one condition at a time and only provide go/no-go criteria. In this work, different types of cell abuse are implemented concurrently to determine the extent to which simultaneous abuse conditions aggravate cell degradation and failure. Vibrational loading is chosen to be the consistent type of physical abuse, and the first… More >

Displaying 1-10 on page 1 of 29. Per Page