Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    An Optimized Convolutional Neural Network with Combination Blocks for Chinese Sign Language Identification

    Yalan Gao, Yanqiong Zhang, Xianwei Jiang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 95-117, 2022, DOI:10.32604/cmes.2022.019970 - 02 June 2022

    Abstract (Aim) Chinese sign language is an essential tool for hearing-impaired to live, learn and communicate in deaf communities. Moreover, Chinese sign language plays a significant role in speech therapy and rehabilitation. Chinese sign language identification can provide convenience for those hearing impaired people and eliminate the communication barrier between the deaf community and the rest of society. Similar to the research of many biomedical image processing (such as automatic chest radiograph processing, diagnosis of chest radiological images, etc.), with the rapid development of artificial intelligence, especially deep learning technologies and algorithms, sign language image recognition ushered… More >

  • Open Access

    ARTICLE

    An Enhanced Deep Learning Method for Skin Cancer Detection and Classification

    Mohamed W. Abo El-Soud1,2,*, Tarek Gaber2,3, Mohamed Tahoun2, Abdullah Alourani1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1109-1123, 2022, DOI:10.32604/cmc.2022.028561 - 18 May 2022

    Abstract The prevalence of melanoma skin cancer has increased in recent decades. The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins. Thus, the early diagnosis of melanoma is a key factor in improving the prognosis of the disease. Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images. Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases. This paper proposes a new method… More >

  • Open Access

    ARTICLE

    COVID-19 Detection via a 6-Layer Deep Convolutional Neural Network

    Shouming Hou, Ji Han*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 855-869, 2022, DOI:10.32604/cmes.2022.016621 - 13 December 2021

    Abstract Many people around the world have lost their lives due to COVID-19. The symptoms of most COVID-19 patients are fever, tiredness and dry cough, and the disease can easily spread to those around them. If the infected people can be detected early, this will help local authorities control the speed of the virus, and the infected can also be treated in time. We proposed a six-layer convolutional neural network combined with max pooling, batch normalization and Adam algorithm to improve the detection effect of COVID-19 patients. In the 10-fold cross-validation methods, our method is superior More >

  • Open Access

    ARTICLE

    Detecting Iris Liveness with Batch Normalized Convolutional Neural Network

    Min Long1,2,*, Yan Zeng1

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 493-504, 2019, DOI:10.32604/cmc.2019.04378

    Abstract Aim to countermeasure the presentation attack for iris recognition system, an iris liveness detection scheme based on batch normalized convolutional neural network (BNCNN) is proposed to improve the reliability of the iris authentication system. The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris, including convolutional layer, batch-normalized (BN) layer, Relu layer, pooling layer and full connected layer. The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels, and then the iris features are extracted by BNCNN. With these features, the genuine iris and More >

Displaying 1-10 on page 1 of 4. Per Page