Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (338)
  • Open Access

    ARTICLE

    Enhancing IoT-Enabled Electric Vehicle Efficiency: Smart Charging Station and Battery Management Solution

    Supriya Wadekar1,*, Shailendra Mittal1, Ganesh Wakte2, Rajshree Shinde2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.071761 - 27 December 2025

    Abstract Rapid evolutions of the Internet of Electric Vehicles (IoEVs) are reshaping and modernizing transport systems, yet challenges remain in energy efficiency, better battery aging, and grid stability. Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand, thus increasing energy costs and battery aging. This study proposes a smart charging station with an AI-powered Battery Management System (BMS), developed and simulated in MATLAB/Simulink, to increase optimality in energy flow, battery health, and impractical scheduling within the IoEV environment. The system operates through… More >

  • Open Access

    ARTICLE

    Effect of Drying Methods on the Morphology and Electrochemical Properties of Cellulose Gel Polymer Electrolytes for Lithium-Ion Batteries

    Jiling Song1, Hua Wang2,*, Jianbing Guo1, Minghua Lin2, Bin Zheng2,*, Jiqiang Wu3,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1143-1157, 2025, DOI:10.32604/jpm.2025.073414 - 26 December 2025

    Abstract The pursuit of safer energy storage systems is driving the development of advanced electrolytes for lithium-ion batteries. Traditional liquid electrolytes pose flammability risks, while solid-state alternatives often suffer from low ionic conductivity. Gel polymer electrolytes (GPEs) emerge as a promising compromise, combining the safety of solids with the ionic conductivity of liquids. Cellulose, an abundant and eco-friendly polymer, presents an ideal base material for sustainable GPEs due to its biocompatibility and mechanical strength. This study systematically investigates how drying methods affect cellulose-based GPEs. Cellulose hydrogels were synthesized through dissolution-crosslinking and processed using vacuum drying (VD),… More >

  • Open Access

    ARTICLE

    Biomass-Derived Hard Carbon Anodes from Setaria Viridis for Na-Ion Batteries

    Jingxiang Meng1, Xin Liu1, Wenping Zeng1, Jianjun Song2, Songyi Liao1, Yonggang Min1,2,*, Jintao Huang1,*

    Journal of Renewable Materials, Vol.13, No.12, pp. 2297-2308, 2025, DOI:10.32604/jrm.2025.02025-0098 - 23 December 2025

    Abstract Biomass-derived hard carbon has gradually become an important component of sodium-ion batteries’ anodes. In this work, Setaria viridis, a widely distributed plant, was employed as a precursor to synthesize hard carbon anodes for sodium-ion batteries. However, the hard carbon derived from raw precursors contains substantial impurities, which limit the performance of the obtained hard carbon. With different chemical etching processes, the content of impurities in the resultants was reduced to varying degrees. The optimized hard carbon anode delivered a reversible capacity of 198 mAh g−1 at a current density of 0.04 A g−1. This work shows the More > Graphic Abstract

    Biomass-Derived Hard Carbon Anodes from Setaria Viridis for Na-Ion Batteries

  • Open Access

    ARTICLE

    Multivariate Lithium-ion Battery State Prediction with Channel-Independent Informer and Particle Filter for Battery Digital Twin

    Changyu Jeon, Younghoon Kim*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3723-3745, 2025, DOI:10.32604/cmes.2025.073030 - 23 December 2025

    Abstract Accurate State-of-Health (SOH) prediction is critical for the safe and efficient operation of lithium-ion batteries (LiBs). However, conventional methods struggle with the highly nonlinear electrochemical dynamics and declining accuracy over long-horizon forecasting. To address these limitations, this study proposes CIPF-Informer, a novel digital twin framework that integrates the Informer architecture with Channel Independence (CI) and a Particle Filter (PF). The CI mechanism enhances robustness by decoupling multivariate state dependencies, while the PF captures the complex stochastic variations missed by purely deterministic models. The proposed framework was evaluated using the Massachusetts Institute of Technology (MIT) battery More >

  • Open Access

    ARTICLE

    Random Eigenvibrations of Internally Supported Plates by the Boundary Element Method

    Michał Guminiak1, Marcin Kamiński2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3133-3163, 2025, DOI:10.32604/cmes.2025.071887 - 23 December 2025

    Abstract The analysis of the dynamics of surface girders is of great importance in the design of engineering structures such as steel welded bridge plane girders or concrete plate-column structures. This work is an extension of the classical deterministic problem of free vibrations of thin (Kirchhoff) plates. The main aim of this work is the study of stochastic eigenvibrations of thin (Kirchhoff) elastic plates resting on internal continuous and column supports by the Boundary Element Method (BEM). This work is a continuation of previous research related to the random approach in plate analysis using the BEM.… More >

  • Open Access

    ARTICLE

    Chemical bath deposition of CZTS layers; study of pH, time deposition and annealing temperature effects

    D. Haouanoha, M. Toubanea,*, R. Talaighila, F. Bensouicib

    Chalcogenide Letters, Vol.22, No.2, pp. 177-188, 2025, DOI:10.15251/CL.2025.222.177

    Abstract CZTS thin layers were successfully deposited onto both glass and indium-tin oxide substrates using the chemical bath deposition method. The effects of solution pH, deposition time, and annealing temperature on the structural, morphological, and optical properties were investigated. Thermal analysis (DSC/TGA) shows that the CZTS kesterite structure crystallized at 237.2°C. Structural analysis by X- ray Diffraction, Rietveld refinement and Raman spectroscopy, revealed that the kesterite phases formation with the presence of SnO2cassiterite and ZnO wurtzite structures in the films annealed at a higher temperature with nanocrystalline size. SEM images showed smooth and homogeneous surfaces, with the More >

  • Open Access

    ARTICLE

    Effect of porosity of mesoporous silicon substrates on CdS thin films deposited by chemical bath deposition

    F. Sakera,*, L. Remachea, D. Belfennacheb, K. R. Cheboukia, R. Yekhlefb

    Chalcogenide Letters, Vol.22, No.2, pp. 151-166, 2025, DOI:10.15251/CL.2025.222.151

    Abstract In this work the chemical bath deposition (CBD) method was used to synthesize Cadmium sulphide (CdS) thin films on glass, silicon (Si), and porous silicon (PSi) substrates. The PSi substrates were prepared by an electrochemical etching method using different current densities at constant etching time of 5 minutes. The CdS thin films were characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical transmittance spectroscopy in the Uv visible range, and electrical characterization (I–V characteristics). The obtained results demonstrated that the morphology of the deposited materials was influenced by the… More >

  • Open Access

    ARTICLE

    Enhanced physical and optoelectronic properties of Ag-doped SnS thin films

    A. G. Kumara,*, V. K. V. Krishnab, A. P. Lingaswamyc, S. Masmad, G. Prathibhae, G. Sujathaf, P. S. Kumarg, T. V. Kumarh, J. V. V. N. K. Raoi, B. H. Raoa

    Chalcogenide Letters, Vol.22, No.2, pp. 143-149, 2025, DOI:10.15251/CL.2025.222.143

    Abstract SnS thin films doped with two atomic % Ag are deposited on a pyrex glass substrates using chemical bath deposition method. The impact of 2 atomic % silver doping on the physical properties of SnS thin films is studied. X-ray diffraction studies confirmed that the deposited SnS films were of α-SnS phase with an orthorhombic crystal structure, which remained stable despite the addition of 2 at.% silver. It is observed that the addition of 2 atomic % silver to SnS chemical bath solution does not greatly influence the structural properties of SnS thin film. The More >

  • Open Access

    ARTICLE

    Synthesis and characterization of Cd1-xPbxSe (0≤ x ≤1) thin films deposited by chemical bath for photovoltaic application

    D. A. Adu-Boadua, M. Paala, M. B. Mensahb, I. Nkrumaha,*, R. Y. Tamakloea, F. K. Amponga, R. K. Nkuma, F. Boakyea

    Chalcogenide Letters, Vol.22, No.7, pp. 603-614, 2025, DOI:10.15251/CL.2025.227.603

    Abstract Cd1-xPbxSe (0≤ x ≤ 1) thin films with values of x = 0, 0.2, 0.4, 0.5 and 1, have been deposited by chemical bath technique for photovoltaic application. The deposition temperature, time and pH of the reactive solutions were 80℃, 150 min and 11 respectively. The XRD results confirmed the polycrystalline nature of all the films. It also showed that all the films exist in face centered cubic structures. There were no pure phases of CdSe and PbSe identified in the XRD results of the ternary compounds. The average grain sizes determined for each sample were… More >

  • Open Access

    ARTICLE

    Chemically deposited cubic SnS photocathodes for photoelectrochemical water splitting

    U. Chalapathia, M. Vasudeva Reddyb,c, C. P. Reddyd, R. Dhanalakshmie, A. Divyaf, K. Mohanarangamg, S. H. Parka,*

    Chalcogenide Letters, Vol.22, No.9, pp. 787-796, 2025, DOI:10.15251/CL.2025.229.787

    Abstract Recently, cubic SnS shows promising potential for optoelectronic applications, including solar cells. Despite its advantages, the photoelectrochemical (PEC) properties of cubic SnS photoelectrodes remain underexplored. This study examines the PEC performance of cubic SnS photocathodes synthesized on FTO substrates via chemical bath deposition and annealed at 250o C for varying durations (10, 20, and 30 min). The as-deposited SnS films, characterized by a cubic crystal structure (lattice parameter: 1.162 nm, crystallite size: 17 nm), an energy gap of 1.75 eV, and an initial photocurrent of 0.8 mA/cm2 at -1 V vs. Hg/HgO, showed significant enhancement More >

Displaying 1-10 on page 1 of 338. Per Page