Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (137)
  • Open Access

    Analysis of Subcellular Localization and Pathogenicity of Plum Bark Necrosis Stem-Pitting Associated Virus Protein P6

    Yuanyuan Li1,#, Jinze Mu2,#, Qingliang Li1, Huabing Liu3, Xuefeng Yuan2,*, Deya Wang1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.7, pp. 2079-2085, 2023, DOI:10.32604/phyton.2023.028237

    Abstract Infection of plum bark necrosis stem pitting associated virus (PBNSPaV) has been reported in many Prunus species in several countries, causing significant economic losses. The very small proteins encoded by plant viruses are often overlooked due to their short sequences and uncertain significance. However, numerous studies have indicated that they might play important roles in the pathogenesis of virus infection. The role of small hydrophobic protein P6, encoded by the open reading frame 2 of PBNSPaV, has not been well explored. In this study, we amplified the P6 fragment from a PBNSPaV isolate by RT-PCR using specific primers and found… More >

  • Open Access



    B. Gangadhara Raoa,*, K. Elangovanb, K. Hema Chandra Reddya, M. Arulprakasajothic

    Frontiers in Heat and Mass Transfer, Vol.16, No.1, pp. 1-8, 2021, DOI:10.5098/hmt.16.15

    Abstract In this research, the 3-D coupled thermal electric model analyses on a sandwich bus bar are presented for the comparison of F Class & B Class of insulation. IEC defines the maximum temperature limit at the conductor based on the class of insulation. This paper gives the clarity on the variation on the current density i.e, the size of the conductor by varying the class of insulation. The study is conducted on tin plated 2000 A sandwich busbar system. The sandwich bus bar is made of copper conductors with tin plating and enclosed by an aluminum cover along its length.… More >

  • Open Access


    Remediation of Cu Contaminated Soil by Fe78Si9B13AP Permeability Reaction Barrier Combined with Electrokinetic Method

    Liefei Pei1,2, Xiangyun Zhang1, Zizhou Yuan1,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2969-2983, 2023, DOI:10.32604/jrm.2023.025760

    Abstract Iron-based amorphous crystalline powder Fe78Si9B13AP is used as a permeability reaction barrier (PRB) combined with an electrokinetic method (EK-PRB) to study the removal rate of Cu in contaminated soil. After treating Cucontaminated soil for 5 days under different voltage gradients and soil water content, the soil pH is between 3.1 and 7.2. The increase of voltage gradient and soil water content can effectively promote the movement of Cu2+ to the cathode. The voltage gradient is 3 V/cm, and the water content of 40% is considered to be an optional experimental condition. Therefore, under this condition, the effects of Fe78Si9B13AP and… More >

  • Open Access


    Salicylic Acid Application Mitigates Oxidative Damage and Improves the Growth Performance of Barley under Drought Stress

    Shah Mohammad Naimul Islam1, Niloy Paul1, Md. Mezanur Rahman2, Md. Ashraful Haque1, Md. Motiar Rohman3, Mohammad Golam Mostofa4,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1513-1537, 2023, DOI:10.32604/phyton.2023.025175

    Abstract Drought is a severe environmental constraint, causing a significant reduction in crop productivity across the world. Salicylic acid (SA) is an important plant growth regulator that helps plants cope with the adverse effects induced by various abiotic stresses. The current study investigated the potential effects of SA on drought tolerance efficacy in two barley (Hordeum vulgare) genotypes, namely BARI barley 5 and BARI barley 7. Ten-day-old barley seedlings were exposed to drought stress by maintaining 7.5% soil moisture content in the absence or presence of 0.5, 1.0 and 1.5 mM SA. Drought exposure led to severe damage to both genotypes,… More >

  • Open Access


    Reliability-Based Topology Optimization of Fail-Safe Structures Using Moving Morphable Bars

    Xuan Wang1,2, Yuankun Shi2, Van-Nam Hoang3, Zeng Meng2,*, Kai Long4,*, Yuesheng Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 3173-3195, 2023, DOI:10.32604/cmes.2023.025501

    Abstract This paper proposes an effective reliability design optimization method for fail-safe topology optimization (FSTO) considering uncertainty based on the moving morphable bars method to establish the ideal balance between cost and robustness, reliability and structural safety. To this end, a performance measure approach (PMA)-based double-loop optimization algorithm is developed to minimize the relative volume percentage while achieving the reliability criterion. To ensure the compliance value of the worst failure case can better approximate the quantified design requirement, a p-norm constraint approach with correction parameter is introduced. Finally, the significance of accounting for uncertainty in the fail-safe design is illustrated by… More > Graphic Abstract

    Reliability-Based Topology Optimization of Fail-Safe Structures Using Moving Morphable Bars

  • Open Access


    Effects of Conductive Carbon Black on Thermal and Electrical Properties of Barium Titanate/Polyvinylidene Fluoride Composites for Road Application

    Zhenguo Wang, Lenan Wang, Yejing Meng*, Yong Wen, Jianzhong Pei

    Journal of Renewable Materials, Vol.11, No.5, pp. 2469-2489, 2023, DOI:10.32604/jrm.2023.025497

    Abstract In the field of roads, due to the effect of vehicle loads, piezoelectric materials under the road surface can convert mechanical vibration into electrical energy, which can be further used in road facilities such as traffic signals and street lamps. The barium titanate/polyvinylidene fluoride (BaTiO3/PVDF) composite, the most common hybrid ceramic-polymer system, was widely used in various fields because the composite combines the good dielectric property of ceramic materials with the good flexibility of PVDF material. Previous studies have found that conductive particles can further improve the dielectric and piezoelectric properties of other composites. However, few studies have investigated the… More >

  • Open Access


    Genetic Diversity and Population Structure Analysis of Barley Landraces from Shanghai Region Using Genotyping-by-Sequencing

    Luli Li1,2, Nigel G. Halford3, Huihui Wang4, Yingjie Zong1, Zhenzhu Guo1, Ruiju Lu1, Chenghong Liu1, Zhiwei Chen1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.4, pp. 1275-1287, 2023, DOI:10.32604/phyton.2023.026946

    Abstract Barley (Hordeum vulgare L.) is an important economic crop for food, feed and industrial raw materials. In the present research, 112 barley landraces from the Shanghai region were genotyped using genotyping-by-sequencing (GBS), and the genetic diversity and population structure were analyzed. The results showed that 210,268 Single Nucleotide Polymorphisms (SNPs) were present in total, and the average poly-morphism information content (PIC) was 0.1642. Genetic diversity and population structure analyses suggested that these barley landraces were differentiated and could be divided into three sub-groups, with morphological traits of row-type and adherence of the hulls the main distinguishing factors between groups. Genotypes… More >

  • Open Access


    The Genetic and Biochemical Mechanisms Underlying Cereal Seed Dormancy

    Sasa Jing1, Yuan Tian1, Heng Zhang2, John T. Hancock3, Ying Zhu2,*, Ping Li1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.4, pp. 1203-1214, 2023, DOI:10.32604/phyton.2023.026305

    Abstract The crop seeds have been a staple food for humans, and seed yield is important for sustaining agriculture development and enhancing human adaptability to food risks. The phenomenon of pre-harvest sprouting (PHS), caused by seed dormancy deficiency, and the phenomenon of low seedling emergence caused by seed deep dormancy, will lead to a reduction in agricultural production. Therefore, it is particularly important to understand the regulation mechanisms of seed dormancy. There are many studies on the regulation of seed dormancy in rice, but there are few studies on the regulation of seed dormancy in other crops, and the research on… More >

  • Open Access


    Comparative Analysis of the Photosynthetic Characteristics and Active Compounds of Semiliquidambar cathayensis Chang Heteromorphic Leaves

    Xiaoming Tian*, Guangfeng Xiang, Hao Lv, Jing Peng, Lu Zhu

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 837-850, 2023, DOI:10.32604/phyton.2023.024408

    Abstract In the present study, the variation patterns of leaf shape in different populations of individual Semiliquidambar cathayensis plants were analyzed to investigate the relationship among leaf shape variation, photosynthetic properties, and active compounds to understand the genetic characteristics of S. cathayensis and screen elite germplasms. The leaf shape of 18 offspring from three natural S. cathayensis populations was analyzed to investigate the level of diversity and variation patterns of leaf shape. Furthermore, photosynthetic pigment content, physiological parameters of photosynthesis, and the active compounds in leaves of different shapes were determined. Statistical analysis showed that the leaf shape variation in  S. cathayensisMore >

  • Open Access


    Improvement of Cemented Gangue Backfill Material with Barium Hydroxide in Acid Mine Water

    Xiaoli Ye1,2, Yuxia Guo1,2,*, Peng Wang1,2, Yonghui Zhao1,2, Wenshuo Xie1,2, Guorui Feng1,2

    Journal of Renewable Materials, Vol.11, No.3, pp. 1451-1467, 2023, DOI:10.32604/jrm.2022.023528

    Abstract As a kind of green concrete, the mechanical properties and durability of cemented gangue backfill material (CGBM) will be affected if they are in acid mine water with sulfate ions in the long term. To improve the performance of CGBM in acid mine water with sulfate ions, CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days. The changes of mass, ultrasonic pulse velocity (UPV) and compressive strength of the specimens at different ages were analyzed. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to analyze the microstructure… More > Graphic Abstract

    Improvement of Cemented Gangue Backfill Material with Barium Hydroxide in Acid Mine Water

Displaying 1-10 on page 1 of 137. Per Page  

Share Link