Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    Chemically Modified Sugarcane Bagasse for Innovative Bio-Composites. Part One: Production and Physico-Mechanical Properties

    Peyman Ahmadi1,*, Davood Efhamisisi1,*, Marie-France Thévenon2,3, Hamid Zarea Hosseinabadi1, Reza Oladi1, Jean Gerard2,3

    Journal of Renewable Materials, Vol.12, No.10, pp. 1715-1728, 2024, DOI:10.32604/jrm.2024.054076 - 23 October 2024

    Abstract Sugarcane bagasse is an agro-waste that could replace timber resources for the production of bio-composites. Composite boards such as particleboard offer an issue for the use and recycling of poor quality timber, and these engineered products can overcome some solid wood limitations such as heterogeneity and dimension. Bagasse offers an alternative to wood chips for particleboard production but present some disadvantages as well, such as poor physico-mechanical properties. To address these issues, bagasse fibers were treated with an innovative natural resin formulated with tannin and furfural. Impregnated particles with different concentrations of resin (5%, 10%,… More > Graphic Abstract

    Chemically Modified Sugarcane Bagasse for Innovative Bio-Composites. Part One: Production and Physico-Mechanical Properties

  • Open Access

    ARTICLE

    A Comprehensive Analysis of the Thermo-Chemical Properties of Sudanese Biomass for Sustainable Applications

    Wadah Mohammed1,2, Zeinab Osman2, Salah Elarabi3, Bertrand Charrier1,*

    Journal of Renewable Materials, Vol.12, No.4, pp. 721-736, 2024, DOI:10.32604/jrm.2024.031050 - 12 June 2024

    Abstract The chemical composition and thermal properties of natural fibers are the most critical variables that determine the overall properties of the fibers and influence their processing and use in different sustainable applications, such as their conversion into bioenergy and biocomposites. Their thermal and mechanical properties can be estimated by evaluating the content of cellulose, lignin, and other extractives in the fibers. In this research work, the chemical composition and thermal properties of three fibers, namely bagasse, kenaf bast fibers, and cotton stalks, were evaluated to assess their potential utilization in producing biocomposites and bioenergy materials.… More >

  • Open Access

    ARTICLE

    Expansive Soil Stabilization by Bagasse Ash in Partial Replacement of Cement

    Waleed Awadalseed1, Honghua Zhao1, Hemei Sun2, Ming Huang3, Cong Liu4,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1911-1935, 2023, DOI:10.32604/jrm.2023.025100 - 01 December 2022

    Abstract This study examined the effects of using bagasse ash in replacement of ordinary Portland cement (OPC) in the treatment of expansive soils. The study concentrated on the compaction characteristics, volume change, compressive strength, splitting tensile strength, microstructure, California bearing ratio (CBR) value, and shear wave velocity of expansive soils treated with cement. Different bagasse ash replacement ratios were used to create soil samples. At varying curing times of 7, 14, and 28 days, standard compaction tests, unconfined compressive strength tests, CBR tests, Brazilian split tensile testing, and bender element (BE) tests were carried out. According… More >

  • Open Access

    ARTICLE

    Enhancing the Performance of Polylactic Acid (PLA) Reinforcing with Sawdust, Rice Husk, and Bagasse Particles

    A. MADHAN KUMAR1, K. JAYAKUMAR2,*, M. SHALINI3

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 269-281, 2022, DOI:10.32381/JPM.2022.39.3-4.7

    Abstract Polylactic acid (PLA) is the most popular thermoplastic biopolymer providing a stiffness and strength alternative to fossil-based plastics. It is also the most promising biodegradable polymer on the market right now, thus gaining a substitute for conservative artificial polymers. Therefore, the current research focuses on synthesizing and mechanical characterization of particlereinforced PLA composites. The hot compression molding technique was used to fabricate PLA-based composites with 0, 2.5, 5, and 7.5 weight % of sawdust, rice husk, and bagasse particle reinforcements to enhance the performance of the PLA. The pellets of PLA matrix were taken with… More >

  • Open Access

    ARTICLE

    Slow Pyrolysis of Sugarcane Bagasse for the Production of Char and the Potential of Its By-Product for Wood Protection

    Febrina Dellarose Boer1,2,3, Jérémy Valette1,2, Jean-Michel Commandré1,2, Mériem Fournier3,4, Marie-France Thévenon1,2,*

    Journal of Renewable Materials, Vol.9, No.1, pp. 97-117, 2021, DOI:10.32604/jrm.2021.013147 - 30 November 2020

    Abstract Sugarcane bagasse was pyrolyzed using a laboratory fixed bed reactor to produce char and its by-product (pyrolysis liquid). The pyrolysis experiments were carried out using different temperatures (400°C and 500°C), heating rate (1 °C/min and 10 °C/min), and holding time (30 min and 60 min). Char was characterized according to its thermal properties, while the pyrolysis liquid was tested for its anti-fungal and anti-termite activities. Pyrolysis temperature and heating rate had a significant influence on the char properties and the yield of char and pyrolysis liquid, where a high-quality char and high yield of pyrolysis… More >

  • Open Access

    ARTICLE

    Solar Thermal Heating and Freeze Concentration for Non-Centrifugal Sugar Production: Design and Performance Analysis

    Louis Francois Marie1,*, Sunkara Prudhvi Raj2, Policherla Venkata Sai3, Tara MacLeod1, Morapakala Srinivas2, K. Srinivas Reddy3, Tadhg Seán O’Donovan4

    Energy Engineering, Vol.117, No.5, pp. 323-342, 2020, DOI:10.32604/EE.2020.011035 - 07 September 2020

    Abstract Non-centrifugal cane sugar (NCS), known as Jaggery, is a form of unre- fined sugar which contains molasses. The integration of renewable energy resources in the production of NCS, have been analysed. The work investigates the energy requirements of a system incorporating a freeze-concentrator and a solar thermal heater to reduce the reliance on the combustion of bagasse or other fuels in a Jaggery production process. Depending on the extent to which freeze concentration can be incorporated into the process, results show that the minimum theoretical energy required to produce Jaggery can be reduced by 91.30%… More >

  • Open Access

    ARTICLE

    Effect of Y-Methacryloxypropyltrimethoxysilane (MPS) and Tetraethoxysilane (TEOS) Towards Preparation of Oil Absorbent Foams from Polyvinyl Alcohol (PVA) Reinforced with Microfibrillated Cellulose (MFC)

    Dzun Noraini Jimat*, Sharifah Shahira Syed Putra, Parveen Jamal, Wan Mohd Fazli Wan Nawawi, Mohammed Saedi Jami

    Journal of Renewable Materials, Vol.8, No.7, pp. 739-757, 2020, DOI:10.32604/jrm.2020.010357 - 01 June 2020

    Abstract Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle. Herein, PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol (PVA) and microfibrillated cellulose (MFC) as a reinforced material from sugarcane bagasse (SCB). In this study, the PVA-MFC foam was chemically silylated with Y-methacryloxypropyltrimethoxysilane (MPS) and tetraethoxysilane (TEOS). The wetting ability and mechanical strength of the silylated 2,20PVA-MFC foam was greatly enhanced compared with unmodified 2,20PVA-MFC foam. The silane chemicals (MPS and TEOS) had been confirmed grafted on 2,20PVA-MFC foam due to the presence of Si-C… More >

  • Open Access

    ARTICLE

    Performance Comparison of Chemically Modified Sugarcane Bagasse for Removing Cd(II) in Water Environment

    Manh Khai Nguyen1,*, Minh Trang Hoang1,2, Thi Thuy Pham1, Bart Van der Bruggen2

    Journal of Renewable Materials, Vol.7, No.5, pp. 415-428, 2019, DOI:10.32604/jrm.2019.04371

    Abstract This paper evaluates the adsorption capacity of chemically sugarcane bagasses with sodium hydroxide (SHS), citric acid (CAS), tartaric acid (TAS) and unmodified sugarcane bagasse (SB) for cadmium adsorption in water environment. The results prove adsorption capacity for Cd (II) increases after chemical modification and the adsorption fits perfectly with the Langmuir isotherm. CAS had the highest maximum adsorption capacity of 45.45 mg/g followed by TAS with 38.46 mg/g and SHS with 29.41 at optimum pH 5.0 and 120 minutes equilibrium time while 1 g SB removed 18.8 mg Cd (II) in the same conditions. The… More >

  • Open Access

    ARTICLE

    Isolation and Characterization of Nanocellulose Obtained from Industrial Crop Waste Resources by Using Mild Acid Hydrolysis

    Galia Moreno, Karla Ramirez, Marianelly Esquivel, Guillermo Jimenez*

    Journal of Renewable Materials, Vol.6, No.4, pp. 362-369, 2018, DOI:10.7569/JRM.2017.634167

    Abstract Cellulose, microcrystalline cellulose and nanocellulose were prepared from three agricultural waste resources: pineapple leaf (PALF), banana rachis (BR), and sugarcane bagasse (SCB). Each waste resource was first converted into microcrystalline cellulose which was subsequently converted into cellulose nanoparticles by using mild (30% w/v) and strong (60% w/v) sulfuric acid concentrations for extraction. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used to characterize each waste resource and extracted cellulosic materials. Furthermore, nanocelluloses were studied by zeta potential, size analysis, and transmission electron microscopy (TEM). Cellulose nanowhiskers were successfully obtained and More >

  • Open Access

    ARTICLE

    Microfibrillated Cellulose from Sugarcane Bagasse as a Biorefinery Product for Ethanol Production

    Rafael Grande1*, Eliane Trovatti2, Maria Tereza B. Pimenta3, Antonio J. F. Carvalho1

    Journal of Renewable Materials, Vol.6, No.2, pp. 195-202, 2018, DOI:10.7569/JRM.2018.634109

    Abstract Research involving the preparation of microfibrillated cellulose (MFC) from sugarcane bagasse is a relevant topic to the production of new nanomaterials and more accessible cellulose substrates for the production of second generation ethanol. Regarding the transformation of cellulose into glucose, the precursor of second generation ethanol, this nanosized cellulosic substrate represents a more appropriate material for the chemical hydrolysis process. The high aspect ratio of MFC improves hydrolysis, requiring mild conditions and decreasing the generation of by-products. Here, MFC was prepared from sugarcane bagasse by ultrasound defibrillation. This material was oxidized with 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) to More >

Displaying 1-10 on page 1 of 14. Per Page