Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    QBFO-BOMP Based Channel Estimation Algorithm for mmWave Massive MIMO Systems

    Xiaoli Jing, Xianpeng Wang*, Xiang Lan, Ting Su

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1789-1804, 2023, DOI:10.32604/cmes.2023.028477 - 26 June 2023

    Abstract At present, the traditional channel estimation algorithms have the disadvantages of over-reliance on initial conditions and high complexity. The bacterial foraging optimization (BFO)-based algorithm has been applied in wireless communication and signal processing because of its simple operation and strong self-organization ability. But the BFO-based algorithm is easy to fall into local optimum. Therefore, this paper proposes the quantum bacterial foraging optimization (QBFO)-binary orthogonal matching pursuit (BOMP) channel estimation algorithm to the problem of local optimization. Firstly, the binary matrix is constructed according to whether atoms are selected or not. And the support set of… More >

  • Open Access

    ARTICLE

    Smart Lung Tumor Prediction Using Dual Graph Convolutional Neural Network

    Abdalla Alameen*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 369-383, 2023, DOI:10.32604/iasc.2023.031039 - 29 September 2022

    Abstract A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail. It is possible to create and study 3D models of anatomical structures to improve treatment outcomes, develop more effective medical devices, or arrive at a more accurate diagnosis. This paper aims to present a fused evolutionary algorithm that takes advantage of both whale optimization and bacterial foraging optimization to optimize feature extraction. The classification process was conducted with the aid of a convolutional neural network (CNN) with dual graphs. Evaluation of the performance of the fused… More >

  • Open Access

    ARTICLE

    Hybrid Bacterial Foraging Optimization with Sparse Autoencoder for Energy Systems

    Helen Josephine V L1, Ramchand Vedaiyan2, V. M. Arul Xavier3, Joy Winston J4, A. Jegatheesan5, D. Lakshmi6, Joshua Samuel Raj7,*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 701-714, 2023, DOI:10.32604/csse.2023.030611 - 16 August 2022

    Abstract The Internet of Things (IoT) technologies has gained significant interest in the design of smart grids (SGs). The increasing amount of distributed generations, maturity of existing grid infrastructures, and demand network transformation have received maximum attention. An essential energy storing model mostly the electrical energy stored methods are developing as the diagnoses for its procedure was becoming further compelling. The dynamic electrical energy stored model using Electric Vehicles (EVs) is comparatively standard because of its excellent electrical property and flexibility however the chance of damage to its battery was there in event of overcharging or… More >

  • Open Access

    ARTICLE

    Image Captioning Using Detectors and Swarm Based Learning Approach for Word Embedding Vectors

    B. Lalitha1,*, V. Gomathi2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 173-189, 2023, DOI:10.32604/csse.2023.024118 - 01 June 2022

    Abstract IC (Image Captioning) is a crucial part of Visual Data Processing and aims at understanding for providing captions that verbalize an image’s important elements. However, in existing works, because of the complexity in images, neglecting major relation between the object in an image, poor quality image, labelling it remains a big problem for researchers. Hence, the main objective of this work attempts to overcome these challenges by proposing a novel framework for IC. So in this research work the main contribution deals with the framework consists of three phases that is image understanding, textual understanding and… More >

  • Open Access

    ARTICLE

    Ensemble of Handcrafted and Deep Learning Model for Histopathological Image Classification

    Vasumathi Devi Majety1, N. Sharmili2, Chinmaya Ranjan Pattanaik3, E. Laxmi Lydia4, Subhi R. M. Zeebaree5, Sarmad Nozad Mahmood6, Ali S. Abosinnee7, Ahmed Alkhayyat8,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4393-4406, 2022, DOI:10.32604/cmc.2022.031109 - 16 June 2022

    Abstract Histopathology is the investigation of tissues to identify the symptom of abnormality. The histopathological procedure comprises gathering samples of cells/tissues, setting them on the microscopic slides, and staining them. The investigation of the histopathological image is a problematic and laborious process that necessitates the expert’s knowledge. At the same time, deep learning (DL) techniques are able to derive features, extract data, and learn advanced abstract data representation. With this view, this paper presents an ensemble of handcrafted with deep learning enabled histopathological image classification (EHCDL-HIC) model. The proposed EHCDL-HIC technique initially performs Weiner filtering based… More >

  • Open Access

    ARTICLE

    PTS-PAPR Reduction Technique for 5G Advanced Waveforms Using BFO Algorithm

    Arun Kumar1, Manoj Gupta1, Dac-Nhuong Le2,3,*, Ayman A. Aly4

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 713-722, 2021, DOI:10.32604/iasc.2021.015793 - 01 March 2021

    Abstract Non-orthogonal multiple access (NOMA) will play an imperative part in an advanced 5G radio arrangement, owing to its numerous benefits such as improved spectrum adeptness, fast data rate, truncated spectrum leakage, and, so on. So far, NOMA undergoes from peak to average power ratio (PAPR) problem, which shrinks the throughput of the scheme. In this article, we propose a hybrid method, centered on the combination of advanced Partial transmission sequence (PTS), Selective mapping (SLM), and bacteria foraging optimization (BFO), known as PTS-BFO and SLM-PTS. PTS and SLM are utilized at the sender side and divide More >

  • Open Access

    ARTICLE

    An Efficient Genetic Hybrid PAPR Technique for 5G Waveforms

    Arun Kumar1, Mahmoud A. Albreem2, Mohammed H. Alsharif3, Abu Jahid4, Peerapong Uthansakul5,*, Jamel Nebhen6

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3283-3292, 2021, DOI:10.32604/cmc.2021.015470 - 01 March 2021

    Abstract Non-orthogonal multiple access (NOMA) is a strong contender multicarrier waveform technique for the fifth generation (5G) communication system. The high peak-to-average power ratio (PAPR) is a serious concern in designing the NOMA waveform. However, the arrangement of NOMA is different from the orthogonal frequency division multiplexing. Thus, traditional reduction methods cannot be applied to NOMA. A partial transmission sequence (PTS) is commonly utilized to minimize the PAPR of the transmitting NOMA symbol. The choice phase aspect in the PTS is the only non-linear optimization obstacle that creates a huge computational complication due to the respective… More >

Displaying 1-10 on page 1 of 7. Per Page