Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Analytical and Numerical Methods to Study the MFPT and SR of a Stochastic Tumor-Immune Model

    Ying Zhang1, Wei Li1,*, Guidong Yang1, Snezana Kirin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2177-2199, 2024, DOI:10.32604/cmes.2023.030728 - 15 December 2023

    Abstract The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model with noise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian white noise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. As follows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPT is obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrence of the tumor from the extinction state to the tumor-present state is more concerned in this paper. A more… More >

  • Open Access

    ARTICLE

    Distribution Network Optimization Model of Industrial Park with Distributed Energy Resources under the Carbon Neutral Targets

    Xiaobao Yu*, Kang Yang

    Energy Engineering, Vol.120, No.12, pp. 2741-2760, 2023, DOI:10.32604/ee.2023.028041 - 29 November 2023

    Abstract Taking an industrial park as an example, this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources (DERs). The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data. To predict and analyze the load growth of the industrial park, an improved back-propagation algorithm is employed. Furthermore, the study classifies users within the industrial park according to their specific power consumption and supply requirements. This user segmentation allows for the introduction of three constraints: node voltage, wire current, and capacity More >

  • Open Access

    ARTICLE

    Machine Learning Privacy Aware Anonymization Using MapReduce Based Neural Network

    U. Selvi*, S. Pushpa

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1185-1196, 2022, DOI:10.32604/iasc.2022.020164 - 22 September 2021

    Abstract Due to the recent advancement in technologies, a huge amount of data is generated where individual private information needs to be preserved. A proper Anonymization algorithm with increased Data utility is required to protect individual privacy. However, preserving privacy of individuals whileprocessing huge amount of data is a challenging task, as the data contains certain sensitive information. Moreover, scalability issue in handling a large dataset is found in using existing framework. Many an Anonymization algorithm for Big Data have been developed and under research. We propose a method of applying Machine Learning techniques to protect More >

  • Open Access

    ARTICLE

    A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines

    Xiyang Li1,2, Bin Cheng1,2, Hui Zhang1,2,*, Xianghan Zhang1, Zhi Yun1

    Energy Engineering, Vol.118, No.6, pp. 1869-1886, 2021, DOI:10.32604/EE.2021.015542 - 10 September 2021

    Abstract With the continuous increase in the proportional use of wind energy across the globe, the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research. Therefore, it is crucial to accurately analyze the thickness of icing on wind turbine blades, which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas. This paper fully utilized the advantages of the support vector machine (SVM) and back-propagation More >

  • Open Access

    ARTICLE

    A Multi-View Gait Recognition Method Using Deep Convolutional Neural Network and Channel Attention Mechanism

    Jiabin Wang*, Kai Peng

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 345-363, 2020, DOI:10.32604/cmes.2020.011046 - 18 September 2020

    Abstract In many existing multi-view gait recognition methods based on images or video sequences, gait sequences are usually used to superimpose and synthesize images and construct energy-like template. However, information may be lost during the process of compositing image and capture EMG signals. Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection. To better solve the problems, a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed. Firstly, the sliding time window method is used to capture EMG signals. Then, the… More >

  • Open Access

    ARTICLE

    Prediction of Concrete Cubic Compressive Strength Using ANN Based Size Effect Model

    Q.W. Yang1, S.G. Du1,2

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 217-236, 2015, DOI:10.3970/cmc.2015.047.217

    Abstract Size effect is a major issue in concrete structures and occurs in concrete in any loading conditions. In this study, size effect on concrete cubic compressive strength is modeled with a back-propagation neural network. The main advantage in using an artificial neural network (ANN) technique is that the network is built directly from experimental data without any simplifying assumptions via the self-organizing capabilities of the neural network. The proposed ANN model is verified by using 27 experimental data sets collected from the literature. For the large specimens, a modified ANN is developed in the paper More >

Displaying 1-10 on page 1 of 6. Per Page