Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    A Joint Estimation Method of SOC and SOH for Lithium-ion Battery Considering Cyber-Attacks Based on GA-BP

    Tianqing Yuan1,2, Na Li1,2, Hao Sun3, Sen Tan4,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4497-4512, 2024, DOI:10.32604/cmc.2024.056061 - 12 September 2024

    Abstract To improve the estimation accuracy of state of charge (SOC) and state of health (SOH) for lithium-ion batteries, in this paper, a joint estimation method of SOC and SOH at charging cut-off voltage based on genetic algorithm (GA) combined with back propagation (BP) neural network is proposed, the research addresses the issue of data manipulation resulting from cyber-attacks. Firstly, anomalous data stemming from cyber-attacks are identified and eliminated using the isolated forest algorithm, followed by data restoration. Secondly, the incremental capacity (IC) curve is derived from the restored data using the Kalman filtering algorithm, with… More >

  • Open Access

    ARTICLE

    Design Optimization of Permanent Magnet Eddy Current Coupler Based on an Intelligence Algorithm

    Dazhi Wang*, Pengyi Pan, Bowen Niu

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1535-1555, 2023, DOI:10.32604/cmc.2023.042286 - 29 November 2023

    Abstract The permanent magnet eddy current coupler (PMEC) solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems. It provides torque to the load and generates heat and losses, reducing its energy transfer efficiency. This issue has become an obstacle for PMEC to develop toward a higher power. This paper aims to improve the overall performance of PMEC through multi-objective optimization methods. Firstly, a PMEC modeling method based on the Levenberg-Marquardt back propagation (LMBP) neural network is proposed, aiming at the characteristics of… More >

  • Open Access

    ARTICLE

    Cross-Domain TSK Fuzzy System Based on Semi-Supervised Learning for Epilepsy Classification

    Zaihe Cheng1, Yuwen Tao2, Xiaoqing Gu3, Yizhang Jiang2, Pengjiang Qian2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1613-1633, 2023, DOI:10.32604/cmes.2023.027708 - 26 June 2023

    Abstract Through semi-supervised learning and knowledge inheritance, a novel Takagi-Sugeno-Kang (TSK) fuzzy system framework is proposed for epilepsy data classification in this study. The new method is based on the maximum mean discrepancy (MMD) method and TSK fuzzy system, as a basic model for the classification of epilepsy data. First, for medical data, the interpretability of TSK fuzzy systems can ensure that the prediction results are traceable and safe. Second, in view of the deviation in the data distribution between the real source domain and the target domain, MMD is used to measure the distance between… More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on Combinatorial Neural Networks

    Tusongjiang Kari1, Sun Guoliang2, Lei Kesong1, Ma Xiaojing1,*, Wu Xian1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1437-1452, 2023, DOI:10.32604/iasc.2023.037012 - 21 June 2023

    Abstract Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation. Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections. For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model, the short-term prediction of wind power based on a combined neural network is proposed. First, the Bi-directional Long Short Term Memory (BiLSTM) network prediction model is constructed, and the bi-directional nature of the BiLSTM network is used… More >

  • Open Access

    ARTICLE

    Fault Recognition of Multilevel Inverter Using Artificial Neural Network Approach

    Aravind Athimoolam1,*, Karthik Balasubramanian2

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1331-1347, 2023, DOI:10.32604/iasc.2023.033465 - 05 January 2023

    Abstract This paper focuses on the development of a diagnostic tool for detecting insulated gate bipolar transistor power electronic switch flaws caused by both open and short circuit faults in multi-level inverter time-frequency output voltage specifications. High-resolution laboratory virtual instrument engineering workbench software testing tool with a sample rate data collection system, as well as specialized signal processing and soft computing technologies, are used in this proposed method. On a single-phase cascaded H-bridge multilevel inverter, simulation and experimental investigations of both open and short issues of the insulated gate bipolar transistor components are performed out. In More >

  • Open Access

    ARTICLE

    SPP1 and the risk score model to improve the survival prediction of patients with hepatocellular carcinoma based on multiple algorithms and back propagation neural networks

    WENLI ZENG1, FENG LING2, KAINUO DANG3, QINGJIA CHI3,*

    BIOCELL, Vol.47, No.3, pp. 581-592, 2023, DOI:10.32604/biocell.2023.025957 - 03 January 2023

    Abstract Hepatocellular carcinoma (HCC) is associated with poor prognosis and fluctuations in immune status. Although studies have found that secreted phosphoprotein 1 (SPP1) is involved in HCC progression, its independent prognostic value and immune-mediated role remain unclear. Using The Cancer Genome Atlas and Gene Expression Omnibus data, we found that low expression of SPP1 is significantly associated with improved survival of HCC patients and that SPP1 expression is correlated with clinical characteristics. Univariate and multivariate Cox regression confirmed that SPP1 is an independent prognostic factor of HCC. Subsequently, we found that T cell CD4 memory-activated monocytes,… More >

  • Open Access

    ARTICLE

    An Improved BPNN Prediction Method Based on Multi-Strategy Sparrow Search Algorithm

    Xiangyan Tang1,2, Dengfang Feng2,*, KeQiu Li1, Jingxin Liu2, Jinyang Song3, Victor S. Sheng4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2789-2802, 2023, DOI:10.32604/cmc.2023.031304 - 31 October 2022

    Abstract Data prediction can improve the science of decision-making by making predictions about what happens in daily life based on natural law trends. Back propagation (BP) neural network is a widely used prediction method. To reduce its probability of falling into local optimum and improve the prediction accuracy, we propose an improved BP neural network prediction method based on a multi-strategy sparrow search algorithm (MSSA). The weights and thresholds of the BP neural network are optimized using the sparrow search algorithm (SSA). Three strategies are designed to improve the SSA to enhance its optimization-seeking ability, leading More >

  • Open Access

    ARTICLE

    Age and Gender Classification Using Backpropagation and Bagging Algorithms

    Ammar Almomani1,2,*, Mohammed Alweshah3, Waleed Alomoush4, Mohammad Alauthman5, Aseel Jabai2, Anwar Abbass2, Ghufran Hamad2, Meral Abdalla2, Brij B. Gupta1,6,7

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3045-3062, 2023, DOI:10.32604/cmc.2023.030567 - 31 October 2022

    Abstract Voice classification is important in creating more intelligent systems that help with student exams, identifying criminals, and security systems. The main aim of the research is to develop a system able to predicate and classify gender, age, and accent. So, a new system called Classifying Voice Gender, Age, and Accent (CVGAA) is proposed. Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories. It has high precision compared to other algorithms used in More >

  • Open Access

    ARTICLE

    A Hybrid BPNN-GARF-SVR Prediction Model Based on EEMD for Ship Motion

    Hao Han, Wei Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1353-1370, 2023, DOI:10.32604/cmes.2022.021494 - 31 August 2022

    Abstract Accurate prediction of ship motion is very important for ensuring marine safety, weapon control, and aircraft carrier landing, etc. Ship motion is a complex time-varying nonlinear process which is affected by many factors. Time series analysis method and many machine learning methods such as neural networks, support vector machines regression (SVR) have been widely used in ship motion predictions. However, these single models have certain limitations, so this paper adopts a multi-model prediction method. First, ensemble empirical mode decomposition (EEMD) is used to remove noise in ship motion data. Then the random forest (RF) prediction More >

  • Open Access

    ARTICLE

    WOA-DNN for Intelligent Intrusion Detection and Classification in MANET Services

    C. Edwin Singh1,*, S. Maria Celestin Vigila2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1737-1751, 2023, DOI:10.32604/iasc.2023.028022 - 19 July 2022

    Abstract Mobile ad-hoc networks (MANET) are garnering a lot of attention because of their potential to provide low-cost solutions to real-world communications. MANETs are more vulnerable to security threats. Changes in nodes, bandwidth limits, and centralized control and management are some of the characteristics. IDS (Intrusion Detection System) are the aid for detection, determination, and identification of illegal system activity such as use, copying, modification, and destruction of data. To address the identified issues, academics have begun to concentrate on building IDS-based machine learning algorithms. Deep learning is a type of machine learning that can produce… More >

Displaying 1-10 on page 1 of 24. Per Page