Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A New Modified EWMA Control Chart for Monitoring Processes Involving Autocorrelated Data

    Korakoch Silpakob1, Yupaporn Areepong1,*, Saowanit Sukparungsee1, Rapin Sunthornwat2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 281-298, 2023, DOI:10.32604/iasc.2023.032487 - 29 September 2022

    Abstract Control charts are one of the tools in statistical process control widely used for monitoring, measuring, controlling, improving the quality, and detecting problems in processes in various fields. The average run length (ARL) can be used to determine the efficacy of a control chart. In this study, we develop a new modified exponentially weighted moving average (EWMA) control chart and derive explicit formulas for both one and the two-sided ARLs for a p-order autoregressive (AR(p)) process with exponential white noise on the new modified EWMA control chart. The accuracy of the explicit formulas was compared… More >

  • Open Access

    ARTICLE

    Exact Run Length Evaluation on Extended EWMA Control Chart for Autoregressive Process

    Kotchaporn Karoon, Yupaporn Areepong*, Saowanit Sukparungsee

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 743-759, 2022, DOI:10.32604/iasc.2022.023322 - 08 February 2022

    Abstract Extended Exponentially Weighted Moving Average (Extended EWMA or EEWMA) control chart is one of the control charts which can quickly detect a small shift. The average run length (ARL) measures the performance of control chart. Due to the derivation of the explicit formulas for ARL on the EEWMA control chart for the autoregressive AR(p) process has not previously been reported. The aim of the article is to derive explicit formulas of ARL using a Fredholm integral equation of the second kind on EEWMA control chart for Autoregressive process, as AR(2) and AR(3) processes with exponential white noise.… More >

Displaying 1-10 on page 1 of 2. Per Page