Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Automatic Segmentation and Detection System for Varicocele Using Ultrasound Images

    Ayman M. Abdalla1,*, Mohammad Abu Awad2, Omar AlZoubi2, La'aly A. Al-Samrraie3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 797-814, 2022, DOI:10.32604/cmc.2022.024913 - 24 February 2022

    Abstract The enlarged veins in the pampiniform venous plexus, known as varicocele disease, are typically identified using ultrasound scans. The medical diagnosis of varicocele is based on examinations made in three positions taken to the right and left testicles of the male patient. The proposed system is designed to determine whether a patient is affected. Varicocele is more frequent on the left side of the scrotum than on the right and physicians commonly depend on the supine position more than other positions. Therefore, the experimental results of this study focused on images taken in the supine… More >

  • Open Access

    ARTICLE

    CT Segmentation of Liver and Tumors Fused Multi-Scale Features

    Aihong Yu1, Zhe Liu1,*, Victor S. Sheng2, Yuqing Song1, Xuesheng Liu3, Chongya Ma4, Wenqiang Wang1, Cong Ma1

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 589-599, 2021, DOI:10.32604/iasc.2021.019513 - 11 August 2021

    Abstract Liver cancer is one of frequent causes of death from malignancy in the world. Owing to the outstanding advantages of computer-aided diagnosis and deep learning, fully automatic segmentation of computed tomography (CT) images turned into a research hotspot over the years. The liver has quite low contrast with the surrounding tissues, together with its lesion areas are thoroughly complex. To deal with these problems, we proposed effective methods for enhancing features and processed public datasets from Liver Tumor Segmentation Challenge (LITS) for the verification. In this experiment, data pre-processing based on the image enhancement and… More >

  • Open Access

    ARTICLE

    Automatic Segmentation of Liver from Abdominal Computed Tomography Images Using Energy Feature

    Prabakaran Rajamanickam1, Shiloah Elizabeth Darmanayagam1,*, Sunil Retmin Raj Cyril Raj2

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 709-722, 2021, DOI:10.32604/cmc.2021.014347 - 12 January 2021

    Abstract Liver Segmentation is one of the challenging tasks in detecting and classifying liver tumors from Computed Tomography (CT) images. The segmentation of hepatic organ is more intricate task, owing to the fact that it possesses a sizeable quantum of vascularization. This paper proposes an algorithm for automatic seed point selection using energy feature for use in level set algorithm for segmentation of liver region in CT scans. The effectiveness of the method can be determined when used in a model to classify the liver CT images as tumorous or not. This involves segmentation of the… More >

  • Open Access

    ARTICLE

    Fully Automatic Segmentation of Gynaecological Abnormality Using a New Viola–Jones Model

    Ihsan Jasim Hussein1, M. A. Burhanuddin2, Mazin Abed Mohammed3,*, Mohamed Elhoseny4, Begonya Garcia-Zapirain5, Marwah Suliman Maashi6, Mashael S. Maashi7

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3161-3182, 2021, DOI:10.32604/cmc.2021.012691 - 28 December 2020

    Abstract One of the most complex tasks for computer-aided diagnosis (Intelligent decision support system) is the segmentation of lesions. Thus, this study proposes a new fully automated method for the segmentation of ovarian and breast ultrasound images. The main contributions of this research is the development of a novel Viola–James model capable of segmenting the ultrasound images of breast and ovarian cancer cases. In addition, proposed an approach that can efficiently generate region-of-interest (ROI) and new features that can be used in characterizing lesion boundaries. This study uses two databases in training and testing the proposed… More >

  • Open Access

    ARTICLE

    Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks

    H. M. Rehan Afzal1,2,*, Suhuai Luo1, Saadallah Ramadan1,2, Jeannette Lechner-Scott1,2,3, Mohammad Ruhul Amin3, Jiaming Li4, M. Kamran Afzal5

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 977-991, 2021, DOI:10.32604/cmc.2020.012448 - 30 October 2020

    Abstract The diagnosis of multiple sclerosis (MS) is based on accurate detection of lesions on magnetic resonance imaging (MRI) which also provides ongoing essential information about the progression and status of the disease. Manual detection of lesions is very time consuming and lacks accuracy. Most of the lesions are difficult to detect manually, especially within the grey matter. This paper proposes a novel and fully automated convolution neural network (CNN) approach to segment lesions. The proposed system consists of two 2D patchwise CNNs which can segment lesions more accurately and robustly. The first CNN network is… More >

  • Open Access

    ARTICLE

    Machine Learning Model Comparison for Automatic Segmentation of Intracoronary Optical Coherence Tomography and Plaque Cap Thickness Quantification

    Caining Zhang1, Xiaopeng Guo2, Xiaoya Guo3, David Molony4, Huaguang Li2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Dalin Tang1*,7, Rencan Nie2,*, Jinde Cao8

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 631-646, 2020, DOI:10.32604/cmes.2020.09718 - 01 May 2020

    Abstract Optical coherence tomography (OCT) is a new intravascular imaging technique with high resolution and could provide accurate morphological infor￾mation for plaques in coronary arteries. However, its segmentation is still com￾monly performed manually by experts which is time-consuming. The aim of this study was to develop automatic techniques to characterize plaque components and quantify plaque cap thickness using 3 machine learning methods including convolutional neural network (CNN) with U-Net architecture, CNN with Fully convolutional DenseNet (FC-DenseNet) architecture and support vector machine (SVM). In vivo OCT and intravascular ultrasound (IVUS) images were acquired from two patients at Emory… More >

  • Open Access

    ABSTRACT

    Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography

    Caining Zhang1, Huaguang Li2, Xiaoya Guo3, David Molony4, Xiaopeng Guo2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Rencan Nie2,*, Jinde Cao3,*, Dalin Tang1,*,7

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 31-31, 2019, DOI:10.32604/mcb.2019.06983

    Abstract Cardiovascular diseases are closely associated with deteriorating atherosclerotic plaques. Optical coherence tomography (OCT) is a recently developed intravascular imaging technique with high resolution approximately 10 microns and could provide accurate quantification of coronary plaque morphology. However, tissue segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective. To overcome these limitations, two automatic segmentation methods for intracoronary OCT image based on support vector machine (SVM) and convolutional neural network (CNN) were performed to identify the plaque region and characterize plaque components. In vivo IVUS and OCT… More >

  • Open Access

    ABSTRACT

    Automatic Segmentation Methods Based on Machine Learning for Intracoronary Optical Coherence Tomography Image

    Caining Zhang1, Xiaoya Guo2, Dalin Tang1,3,*, David Molony4, Chun Yang3, Habib Samady4, Jie Zheng5, Gary S. Mintz6, Akiko Maehara6, Mitsuaki Matsumura6, Don P. Giddens4,7

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 79-80, 2019, DOI:10.32604/mcb.2019.05747

    Abstract Cardiovascular diseases are closely associated with sudden rupture of atherosclerotic plaques. Previous image modalities such as magnetic resonance imaging (MRI) and intravascular ultrasound (IVUS) were unable to identify vulnerable plaques due to their limited resolution. Optical coherence tomography (OCT) is an advanced intravascular imaging technique developed in recent years which has high resolution approximately 10 microns and could provide more accurate morphology of coronary plaque. In particular, it is now possible to identify plaques with fibrous cap thickness <65 μm, an accepted threshold value for vulnerable plaques. However, the current segmentation of OCT images are… More >

  • Open Access

    ARTICLE

    Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography

    Caining Zhang1, Huaguang Li2, Xiaoya Guo3, David Molony4, Xiaopeng Guo2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Rencan Nie2,*, Jinde Cao3,*, Dalin Tang1,*,7

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 153-161, 2019, DOI:10.32604/mcb.2019.06873

    Abstract Cardiovascular diseases are closely associated with deteriorating atherosclerotic plaques. Optical coherence tomography (OCT) is a recently developed intravascular imaging technique with high resolution approximately 10 microns and could provide accurate quantification of coronary plaque morphology. However, tissue segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective. To overcome these limitations, two automatic segmentation methods for intracoronary OCT image based on support vector machine (SVM) and convolutional neural network (CNN) were performed to identify the plaque region and characterize plaque components. In vivo IVUS and OCT coronary… More >

  • Open Access

    ARTICLE

    Semi-automatic Segmentation of Multiple Sclerosis Lesion Based Active Contours Model and Variational Dirichlet Process

    Foued Derraz1, Laurent Peyrodie2, Antonio PINTI3, Abdelmalik Taleb-Ahmed3, Azzeddine Chikh4, Patrick Hautecoeur5

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.2, pp. 95-118, 2010, DOI:10.3970/cmes.2010.067.095

    Abstract We propose a new semi-automatic segmentation based Active Contour Model and statistic prior knowledge of Multiple Sclerosis (MS) Lesions in Regions Of Interest (RIO) within brain Magnetic Resonance Images(MRI). Reliable segmentation of MS lesion is important for at least three types of practical applications: pharmaceutical trails, making decision for drug treatment, patient follow-up. Manual segmentation of the MS lesions in brain MRI by well qualified experts is usually preferred. However, manual segmentation is hard to reproduce and can be highly cost and time consuming in the presence of large volume of MRI data. In other… More >

Displaying 1-10 on page 1 of 10. Per Page