Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Computational Approach for Automated Segmentation and Classification of Region of Interest in Lateral Breast Thermograms

    Dennies Tsietso1,*, Abid Yahya1, Ravi Samikannu1, Basit Qureshi2, Muhammad Babar3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4749-4765, 2024, DOI:10.32604/cmc.2024.052793 - 12 September 2024

    Abstract Breast cancer is one of the major health issues with high mortality rates and a substantial impact on patients and healthcare systems worldwide. Various Computer-Aided Diagnosis (CAD) tools, based on breast thermograms, have been developed for early detection of this disease. However, accurately segmenting the Region of Interest (ROI) from thermograms remains challenging. This paper presents an approach that leverages image acquisition protocol parameters to identify the lateral breast region and estimate its bottom boundary using a second-degree polynomial. The proposed method demonstrated high efficacy, achieving an impressive Jaccard coefficient of 86% and a Dice… More >

  • Open Access

    ARTICLE

    Semi/Fully-Automated Segmentation of Gastric-Polyp Using Aquila-Optimization-Algorithm Enhanced Images

    Venkatesan Rajinikanth1, Shabnam Mohamed Aslam2, Seifedine Kadry3, Orawit Thinnukool4,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 4087-4105, 2022, DOI:10.32604/cmc.2022.019786 - 27 September 2021

    Abstract The incident rate of the Gastrointestinal-Disease (GD) in humans is gradually rising due to a variety of reasons and the Endoscopic/Colonoscopic-Image (EI/CI) supported evaluation of the GD is an approved practice. Extraction and evaluation of the suspicious section of the EI/CI is essential to diagnose the disease and its severity. The proposed research aims to implement a joint thresholding and segmentation framework to extract the Gastric-Polyp (GP) with better accuracy. The proposed GP detection system consist; (i) Enhancement of GP region using Aquila-Optimization-Algorithm supported tri-level thresholding with entropy (Fuzzy/Shannon/Kapur) and between-class-variance (Otsu) technique, (ii) Automated More >

  • Open Access

    ARTICLE

    An AW-HARIS Based Automated Segmentation of Human Liver Using CT Images

    P. Naga Srinivasu1, Shakeel Ahmed2,*, Abdulaziz Alhumam2, Akash Bhoi Kumar3, Muhammad Fazal Ijaz4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3303-3319, 2021, DOI:10.32604/cmc.2021.018472 - 24 August 2021

    Abstract In the digestion of amino acids, carbohydrates, and lipids, as well as protein synthesis from the consumed food, the liver has many diverse responsibilities and functions that are to be performed. Liver disease may impact the hormonal and nutritional balance in the human body. The earlier diagnosis of such critical conditions may help to treat the patient effectively. A computationally efficient AW-HARIS algorithm is used in this paper to perform automated segmentation of CT scan images to identify abnormalities in the human liver. The proposed approach can recognize the abnormalities with better accuracy without training,… More >

  • Open Access

    ARTICLE

    A Deep Convolutional Architectural Framework for Radiograph Image Processing at Bit Plane Level for Gender & Age Assessment

    N. Shobha Rani1, *, M. Chandrajith2, B. R. Pushpa1, B. J. Bipin Nair1

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 679-694, 2020, DOI:10.32604/cmc.2020.08552

    Abstract Assessing the age of an individual via bones serves as a fool proof method in true determination of individual skills. Several attempts are reported in the past for assessment of chronological age of an individual based on variety of discriminative features found in wrist radiograph images. The permutation and combination of these features realized satisfactory accuracies for a set of limited groups. In this paper, assessment of gender for individuals of chronological age between 1-17 years is performed using left hand wrist radiograph images. A fully automated approach is proposed for removal of noise persisted… More >

  • Open Access

    ABSTRACT

    Automated Segmentation of Atherosclerotic Plaque Using Bayes Classifier for Multi-Contrast In Vivo and Ex Vivo MR Images

    Xueying Huang1, Chun Yang2, Jie Zheng3, Pamela K. Woodard3, Dalin Tang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.1, pp. 29-34, 2007, DOI:10.3970/icces.2007.001.029

    Abstract Atherosclerotic plaques may rupture without warning and cause acute cardiovascular syndromes such as heart attack and stroke. Accurate identification of plaque components will improve the accuracy and reliability of computational models. In this article, we present a segmentation method using a cluster analysis technique to quantify and classify plaque components from magnetic resonance images (MRI). 3D in vivo and ex vivo multi-contrast (T1-, proton density-, and T2-weighted) MR Images were acquired from a patient of cardiovascular disease. Normal distribution Bayes classifier was performed on ex vivo and in vivo MR Images respectively. The resulting segmentation More >

Displaying 1-10 on page 1 of 5. Per Page