Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    A Trust Evaluation Mechanism Based on Autoencoder Clustering Algorithm for Edge Device Access of IoT

    Xiao Feng1,2,3,*, Zheng Yuan1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1881-1895, 2024, DOI:10.32604/cmc.2023.047243

    Abstract First, we propose a cross-domain authentication architecture based on trust evaluation mechanism, including registration, certificate issuance, and cross-domain authentication processes. A direct trust evaluation mechanism based on the time decay factor is proposed, taking into account the influence of historical interaction records. We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data. We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record. Then we propose an autoencoder-based trust clustering algorithm. We perform feature… More >

  • Open Access

    ARTICLE

    Enhancing Multicriteria-Based Recommendations by Alleviating Scalability and Sparsity Issues Using Collaborative Denoising Autoencoder

    S. Abinaya*, K. Uttej Kumar

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2269-2286, 2024, DOI:10.32604/cmc.2024.047167

    Abstract A Recommender System (RS) is a crucial part of several firms, particularly those involved in e-commerce. In conventional RS, a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences. Nowadays, businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’ preferences. On the other hand, the collaborative filtering (CF) algorithm utilizing AutoEncoder (AE) is seen to be effective in identifying user-interested items. However, the cost of these computations increases nonlinearly as the number of items and users increases. To triumph over the… More >

  • Open Access

    ARTICLE

    Machine Learning Techniques Using Deep Instinctive Encoder-Based Feature Extraction for Optimized Breast Cancer Detection

    Vaishnawi Priyadarshni1, Sanjay Kumar Sharma1, Mohammad Khalid Imam Rahmani2,*, Baijnath Kaushik3, Rania Almajalid2,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2441-2468, 2024, DOI:10.32604/cmc.2024.044963

    Abstract Breast cancer (BC) is one of the leading causes of death among women worldwide, as it has emerged as the most commonly diagnosed malignancy in women. Early detection and effective treatment of BC can help save women’s lives. Developing an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection techniques. This paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) data set. The novelty of the proposed framework lies in the integration of various techniques, where the fusion… More >

  • Open Access

    ARTICLE

    A Time Series Intrusion Detection Method Based on SSAE, TCN and Bi-LSTM

    Zhenxiang He*, Xunxi Wang, Chunwei Li

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 845-871, 2024, DOI:10.32604/cmc.2023.046607

    Abstract In the fast-evolving landscape of digital networks, the incidence of network intrusions has escalated alarmingly. Simultaneously, the crucial role of time series data in intrusion detection remains largely underappreciated, with most systems failing to capture the time-bound nuances of network traffic. This leads to compromised detection accuracy and overlooked temporal patterns. Addressing this gap, we introduce a novel SSAE-TCN-BiLSTM (STL) model that integrates time series analysis, significantly enhancing detection capabilities. Our approach reduces feature dimensionality with a Stacked Sparse Autoencoder (SSAE) and extracts temporally relevant features through a Temporal Convolutional Network (TCN) and Bidirectional Long Short-term Memory Network (Bi-LSTM). By… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection Using Improved Deep Learning Models

    Sumaya S. Sulaiman1,2,*, Ibraheem Nadher3, Sarab M. Hameed2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1049-1069, 2024, DOI:10.32604/cmc.2023.046051

    Abstract Fraud of credit cards is a major issue for financial organizations and individuals. As fraudulent actions become more complex, a demand for better fraud detection systems is rising. Deep learning approaches have shown promise in several fields, including detecting credit card fraud. However, the efficacy of these models is heavily dependent on the careful selection of appropriate hyperparameters. This paper introduces models that integrate deep learning models with hyperparameter tuning techniques to learn the patterns and relationships within credit card transaction data, thereby improving fraud detection. Three deep learning models: AutoEncoder (AE), Convolution Neural Network (CNN), and Long Short-Term Memory… More >

  • Open Access

    ARTICLE

    Deep Autoencoder-Based Hybrid Network for Building Energy Consumption Forecasting

    Noman Khan1,2, Samee Ullah Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 153-173, 2024, DOI:10.32604/csse.2023.039407

    Abstract Energy management systems for residential and commercial buildings must use an appropriate and efficient model to predict energy consumption accurately. To deal with the challenges in power management, the short-term Power Consumption (PC) prediction for household appliances plays a vital role in improving domestic and commercial energy efficiency. Big data applications and analytics have shown that data-driven load forecasting approaches can forecast PC in commercial and residential sectors and recognize patterns of electric usage in complex conditions. However, traditional Machine Learning (ML) algorithms and their features engineering procedure emphasize the practice of inefficient and ineffective techniques resulting in poor generalization.… More >

  • Open Access

    ARTICLE

    An Innovative Deep Architecture for Flight Safety Risk Assessment Based on Time Series Data

    Hong Sun1, Fangquan Yang2, Peiwen Zhang3,*, Yang Jiao4, Yunxiang Zhao5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2549-2569, 2024, DOI:10.32604/cmes.2023.030131

    Abstract With the development of the integration of aviation safety and artificial intelligence, research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk management, but searching for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry. Therefore, an improved risk assessment algorithm (PS-AE-LSTM) based on long short-term memory network (LSTM) with autoencoder (AE) is proposed for the various supervised deep learning algorithms in flight safety that cannot adequately address the problem of the quality on risk level labels. Firstly, based on the normal distribution characteristics of… More >

  • Open Access

    ARTICLE

    K-Hyperparameter Tuning in High-Dimensional Space Clustering: Solving Smooth Elbow Challenges Using an Ensemble Based Technique of a Self-Adapting Autoencoder and Internal Validation Indexes

    Rufus Gikera1,*, Jonathan Mwaura2, Elizaphan Muuro3, Shadrack Mambo3

    Journal on Artificial Intelligence, Vol.5, pp. 75-112, 2023, DOI:10.32604/jai.2023.043229

    Abstract k-means is a popular clustering algorithm because of its simplicity and scalability to handle large datasets. However, one of its setbacks is the challenge of identifying the correct k-hyperparameter value. Tuning this value correctly is critical for building effective k-means models. The use of the traditional elbow method to help identify this value has a long-standing literature. However, when using this method with certain datasets, smooth curves may appear, making it challenging to identify the k-value due to its unclear nature. On the other hand, various internal validation indexes, which are proposed as a solution to this issue, may be… More >

  • Open Access

    ARTICLE

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

    Qiankun Zuo1,4, Junhua Hu2, Yudong Zhang3,*, Junren Pan4, Changhong Jing4, Xuhang Chen5, Xiaobo Meng6, Jin Hong7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2129-2147, 2023, DOI:10.32604/cmes.2023.028732

    Abstract The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven models. Specifically, the label distribution… More > Graphic Abstract

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional… More >

Displaying 1-10 on page 1 of 70. Per Page