Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    QL-CBR Hybrid Approach for Adapting Context-Aware Services

    Somia Belaidouni1,2, Moeiz Miraoui3,4,*, Chakib Tadj1

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1085-1098, 2022, DOI:10.32604/csse.2022.024056 - 09 May 2022

    Abstract A context-aware service in a smart environment aims to supply services according to user situational information, which changes dynamically. Most existing context-aware systems provide context-aware services based on supervised algorithms. Reinforcement algorithms are another type of machine-learning algorithm that have been shown to be useful in dynamic environments through trial-and-error interactions. They also have the ability to build excellent self-adaptive systems. In this study, we aim to incorporate reinforcement algorithms (Q-learning) into a context-aware system to provide relevant services based on a user’s dynamic context. To accelerate the convergence of reinforcement learning (RL) algorithms and More >

Displaying 1-10 on page 1 of 1. Per Page