Anwer Mustafa Hilal1, Imène ISSAOUI2, Marwa Obayya3, Fahd N. Al-Wesabi4, Nadhem NEMRI5, Manar Ahmed Hamza1,*, Mesfer Al Duhayyim6, Abu Sarwar Zamani1
CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3853-3867, 2022, DOI:10.32604/cmc.2022.022663
- 07 December 2021
Abstract The abundant existence of both structured and unstructured data and rapid advancement of statistical models stressed the importance of introducing Explainable Artificial Intelligence (XAI), a process that explains how prediction is done in AI models. Biomedical mental disorder, i.e., Autism Spectral Disorder (ASD) needs to be identified and classified at early stage itself in order to reduce health crisis. With this background, the current paper presents XAI-based ASD diagnosis (XAI-ASD) model to detect and classify ASD precisely. The proposed XAI-ASD technique involves the design of Bacterial Foraging Optimization (BFO)-based Feature Selection (FS) technique. In addition, More >