Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Enhancing Employee Turnover Prediction: An Advanced Feature Engineering Analysis with CatBoost

    Md Monir Ahammod Bin Atique1,#, Md Ilias Bappi1,#, Kwanghoon Choi1,*, Kyungbaek Kim1,*, Md Abul Ala Walid2, Pranta Kumar Sarkar3

    Computer Systems Science and Engineering, Vol.49, pp. 455-479, 2025, DOI:10.32604/csse.2025.069213 - 19 August 2025

    Abstract Employee turnover presents considerable challenges for organizations, leading to increased recruitment costs and disruptions in ongoing operations. High voluntary attrition rates can result in substantial financial losses, making it essential for Human Resource (HR) departments to prioritize turnover reduction. In this context, Artificial Intelligence (AI) has emerged as a vital tool in strengthening business strategies and people management. This paper incorporates two new representative features, introducing three types of feature engineering to enhance the analysis of employee turnover in the IBM HR Analytics dataset. Key Machine Learning (ML) techniques were subsequently employed in this work,… More >

  • Open Access

    ARTICLE

    Ensemble Classifier-Based Features Ranking on Employee Attrition

    Yok-Yen Nguwi*

    Journal on Artificial Intelligence, Vol.4, No.3, pp. 189-199, 2022, DOI:10.32604/jai.2022.034064 - 01 December 2022

    Abstract The departure of good employee incurs direct and indirect cost and impacts for an organization. The direct cost arises from hiring to training of the relevant employee. The replacement time and lost productivity affect the running of business processes. This work presents the use of ensemble classifier to identify important attributes that affects attrition significantly. The data consists of attributes related to job function, education level, satisfaction towards work and working relationship, compensation, and frequency of business travel. Both bagging and boosting classifiers were used for testing. The results show that the selected features (nine More >

Displaying 1-10 on page 1 of 2. Per Page