Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Multi-Attribute Couplings-Based Euclidean and Nominal Distances for Unlabeled Nominal Data

    Lei Gu*, Furong Zhang, Li Ma

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5911-5928, 2023, DOI:10.32604/cmc.2023.038127 - 29 April 2023

    Abstract Learning unlabeled data is a significant challenge that needs to handle complicated relationships between nominal values and attributes. Increasingly, recent research on learning value relations within and between attributes has shown significant improvement in clustering and outlier detection, etc. However, typical existing work relies on learning pairwise value relations but weakens or overlooks the direct couplings between multiple attributes. This paper thus proposes two novel and flexible multi-attribute couplings-based distance (MCD) metrics, which learn the multi-attribute couplings and their strengths in nominal data based on information theories: self-information, entropy, and mutual information, for measuring both More >

Displaying 1-10 on page 1 of 1. Per Page