Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Linear and Non-Linear Dynamics of Inertial Waves in a Rotating Cylinder with Antiparallel Inclined Ends

    Mariya Shiryaeva1, Mariya Subbotina2, Stanislav Subbotin1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 787-802, 2024, DOI:10.32604/fdmp.2024.048165 - 28 March 2024

    Abstract This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends. In this setting, the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius. Three different regimes are found: inertial wave attractor, global oscillations (the cavity’s resonant modes) and regime of symmetric reflection of wave beams. In linear wave regimes, a steady single vortex elongated along the rotation axis is generated. The location of the wave’s interaction with the sloping ends determines the vortex position and More >

  • Open Access

    ARTICLE

    A Speech Cryptosystem Using the New Chaotic System with a Capsule-Shaped Equilibrium Curve

    Mohamad Afendee Mohamed1, Talal Bonny2, Aceng Sambas3, Sundarapandian Vaidyanathan4, Wafaa Al Nassan2, Sen Zhang5, Khaled Obaideen2, Mustafa Mamat1, Mohd Kamal Mohd Nawawi6,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5987-6006, 2023, DOI:10.32604/cmc.2023.035668 - 29 April 2023

    Abstract In recent years, there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle, butterfly, heart and apple. This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve. The proposed chaotic system has two quadratic, two cubic and two quartic nonlinear terms. It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points. It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but… More >

  • Open Access

    ARTICLE

    Optimal Strategies Trajectory with Multi-Local-Worlds Graph

    Xiang Yu1, Chonghua Wang2, Xiaojing Zheng3,*, Chaoyu Zeng4, Brij B. Gupta5,6,7

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2079-2099, 2023, DOI:10.32604/cmc.2023.034118 - 06 February 2023

    Abstract This paper constructs a non-cooperative/cooperative stochastic differential game model to prove that the optimal strategies trajectory of agents in a system with a topological configuration of a Multi-Local-World graph would converge into a certain attractor if the system’s configuration is fixed. Due to the economics and management property, almost all systems are divided into several independent Local-Worlds, and the interaction between agents in the system is more complex. The interaction between agents in the same Local-World is defined as a stochastic differential cooperative game; conversely, the interaction between agents in different Local-Worlds is defined as… More >

  • Open Access

    ARTICLE

    WACPN: A Neural Network for Pneumonia Diagnosis

    Shui-Hua Wang1, Muhammad Attique Khan2, Ziquan Zhu1, Yu-Dong Zhang1,*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 21-34, 2023, DOI:10.32604/csse.2023.031330 - 16 August 2022

    Abstract Community-acquired pneumonia (CAP) is considered a sort of pneumonia developed outside hospitals and clinics. To diagnose community-acquired pneumonia (CAP) more efficiently, we proposed a novel neural network model. We introduce the 2-dimensional wavelet entropy (2d-WE) layer and an adaptive chaotic particle swarm optimization (ACP) algorithm to train the feed-forward neural network. The ACP uses adaptive inertia weight factor (AIWF) and Rossler attractor (RA) to improve the performance of standard particle swarm optimization. The final combined model is named WE-layer ACP-based network (WACPN), which attains a sensitivity of 91.87 ± 1.37%, a specificity of 90.70 ± 1.19%, a precision of More >

  • Open Access

    ARTICLE

    Numerical Study of Natural Convection in an Inclined Porous Cavity

    Saad Adjal1,*, Sabiha Aklouche-Benouaguef1, Belkacem Zeghmati2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1389-1397, 2022, DOI:10.32604/fdmp.2022.021619 - 27 May 2022

    Abstract Two-dimensional transient laminar natural convection in a square cavity containing a porous medium and inclined at an angle of 30∘ is investigated numerically. The vertical walls are differentially heated, and the horizontal walls are adiabatic. The effect of Rayleigh number on heat transfer and on the road to chaos is analyzed. The natural heat transfer and the Darcy Brinkman equations are solved by using a finite volume method and a Tri Diagonal Matrix Algorithm (TDMA). The results are obtained for a porosity equal to 0.45, a Darcy number and a Prandtl respectively equal to 10−3 and More >

  • Open Access

    ARTICLE

    Image Encryption Using Multi-Scroll Attractor and Chaotic Logistic Map

    R. Anitha*, B. Vijayalakshmi

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3447-3463, 2022, DOI:10.32604/cmc.2022.021519 - 29 March 2022

    Abstract In the current scenario, data transmission over the network is a challenging task as there is a need for protecting sensitive data. Traditional encryption schemes are less sensitive and less complex thus prone to attacks during transmission. It has been observed that an encryption scheme using chaotic theory is more promising due to its non-linear and unpredictable behavior. Hence, proposed a novel hybrid image encryption scheme with multi-scroll attractors and quantum chaos logistic maps (MSA-QCLM). The image data is classified as inter-bits and intra-bits which are permutated separately using multi scroll attractor & quantum logistic… More >

  • Open Access

    ARTICLE

    A User-Transformer Relation Identification Method Based on QPSO and Kernel Fuzzy Clustering

    Yong Xiao1, Xin Jin1, Jingfeng Yang2, Yanhua Shen3,*, Quansheng Guan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 1293-1313, 2021, DOI:10.32604/cmes.2021.012562 - 19 February 2021

    Abstract User-transformer relations are significant to electric power marketing, power supply safety, and line loss calculations. To get accurate user-transformer relations, this paper proposes an identification method for user-transformer relations based on improved quantum particle swarm optimization (QPSO) and Fuzzy C-Means Clustering. The main idea is: as energy meters at different transformer areas exhibit different zero-crossing shift features, we classify the zero-crossing shift data from energy meters through Fuzzy C-Means Clustering and compare it with that at the transformer end to identify user-transformer relations. The proposed method contributes in three main ways. First, based on the… More >

  • Open Access

    ARTICLE

    Mesoscopic Biochemical Basis of Isogenetic Inheritance and Canalization: Stochasticity, Nonlinearity, and Emergent Landscape

    Hong Qian, Hao Ge

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 1-30, 2012, DOI:10.3970/mcb.2012.009.001

    Abstract Biochemical reaction systems in mesoscopic volume, under sustained environmental chemical gradient(s), can have multiple stochastic attractors. Two distinct mechanisms are known for their origins: (a) Stochastic single-molecule events, such as gene expression, with slow gene on-off dynamics; and (b) nonlinear networks with feedbacks. These two mechanisms yield different volume dependence for the sojourn time of an attractor. As in the classic Arrhenius theory for temperature dependent transition rates, a landscape perspective provides a natural framework for the system's behavior. However, due to the nonequilibrium nature of the open chemical systems, the landscape, and the attractors More >

  • Open Access

    ABSTRACT

    Surface reconstrucion by means of AI

    T. Podoba1, L. Tomsu1, K. Vlcek1, M. Heczko

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.4, pp. 111-122, 2010, DOI:10.3970/icces.2010.015.111

    Abstract Surface reconstruction based on chaotic systems or exactly given point clouds is very difficult area. Current algorithms such as Marching Cube or Voronoi Filtering do not use methods based on artificial intelligence. In this paper, we investigate solution of polygonal surface construction based on AI. The main purpose is to generate complex polygonal mesh structures based on strange attractors with fractal structure. Attractors have to be created as 4D objects using quaternion algebra or using methods of AI. Polygonal mesh can have different numbers of polygons because of iterative application of this system. Our main More >

  • Open Access

    ARTICLE

    The Effect of a Rotational Spring on the Global Stability Aspects of the Classical von Mises Model under Step Loading

    D. S. Sophianopoulos1, G. T. Michaltsos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 15-26, 2001, DOI:10.3970/cmes.2001.002.015

    Abstract The present work deals with the global stability aspects of a simple two-degrees-of-freedom autonomous initially imperfect damped model, under step (conservative) loading. The proposed system is an extension of the classical limit point one firstly introduced by von Mises, with the addition of a linear rotational spring. The effect of its properties (stiffness and damping) are fully assessed and under certain combinations of the parameters involved a third possibility of postbuckling dynamic response is revealed. This is associated with a point attractor response on a stable prebuckling fixed point, although dynamic buckling has already occurred, More >

Displaying 1-10 on page 1 of 10. Per Page