Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Improving VQA via Dual-Level Feature Embedding Network

    Yaru Song*, Huahu Xu, Dikai Fang

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 397-416, 2024, DOI:10.32604/iasc.2023.040521 - 11 July 2024

    Abstract Visual Question Answering (VQA) has sparked widespread interest as a crucial task in integrating vision and language. VQA primarily uses attention mechanisms to effectively answer questions to associate relevant visual regions with input questions. The detection-based features extracted by the object detection network aim to acquire the visual attention distribution on a predetermined detection frame and provide object-level insights to answer questions about foreground objects more effectively. However, it cannot answer the question about the background forms without detection boxes due to the lack of fine-grained details, which is the advantage of grid-based features. In… More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Method Based on Feature Graph and Multiple Attention Mechanisms

    Zhenxiang He*, Zhenyu Zhao, Ke Chen, Yanlin Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3023-3045, 2024, DOI:10.32604/cmc.2024.050281 - 15 May 2024

    Abstract The fast-paced development of blockchain technology is evident. Yet, the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem. Conventional smart contract vulnerability detection primarily relies on static analysis tools, which are less efficient and accurate. Although deep learning methods have improved detection efficiency, they are unable to fully utilize the static relationships within contracts. Therefore, we have adopted the advantages of the above two methods, combining feature extraction mode of tools with deep learning techniques. Firstly, we have constructed corresponding feature extraction mode for… More >

  • Open Access

    ARTICLE

    Enhancing Deep Learning Semantics: The Diffusion Sampling and Label-Driven Co-Attention Approach

    Chunhua Wang1,2, Wenqian Shang1,2,*, Tong Yi3,*, Haibin Zhu4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1939-1956, 2024, DOI:10.32604/cmc.2024.048135 - 15 May 2024

    Abstract The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms, yielding outstanding achievements across diverse domains. Nonetheless, self-attention mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures. In response, this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network (DSLD), which adopts a diffusion sampling method to capture more comprehensive semantic information of the data. Additionally, the model leverages the joint correlation information of labels and data to introduce the computation of text representation, correcting semantic representation biases in the data, and More >

  • Open Access

    ARTICLE

    Combo Packet: An Encryption Traffic Classification Method Based on Contextual Information

    Yuancong Chai, Yuefei Zhu*, Wei Lin, Ding Li

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1223-1243, 2024, DOI:10.32604/cmc.2024.049904 - 25 April 2024

    Abstract With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has become a core key technology in network supervision. In recent years, many different solutions have emerged in this field. Most methods identify and classify traffic by extracting spatiotemporal characteristics of data flows or byte-level features of packets. However, due to changes in data transmission mediums, such as fiber optics and satellites, temporal features can exhibit significant variations due to changes in communication links and transmission quality. Additionally, partial spatial features can change due to reasons like data reordering and retransmission.… More >

  • Open Access

    ARTICLE

    A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network

    Meng Huang, Honglei Wei*, Xianyi Zhai

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 531-547, 2024, DOI:10.32604/cmc.2024.048510 - 25 April 2024

    Abstract In pursuit of cost-effective manufacturing, enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips. To ensure consistent chip orientation during packaging, a circular marker on the front side is employed for pin alignment following successful functional testing. However, recycled chips often exhibit substantial surface wear, and the identification of the relatively small marker proves challenging. Moreover, the complexity of generic target detection algorithms hampers seamless deployment. Addressing these issues, this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips, termed Van-YOLOv8. Initially, to alleviate the influence of diminutive, low-resolution… More >

  • Open Access

    ARTICLE

    Mobile Crowdsourcing Task Allocation Based on Dynamic Self-Attention GANs

    Kai Wei1, Song Yu2, Qingxian Pan1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 607-622, 2024, DOI:10.32604/cmc.2024.048240 - 25 April 2024

    Abstract Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation. While traditional methods for task allocation can help reduce costs and improve efficiency, they may encounter challenges when dealing with abnormal data flow nodes, leading to decreased allocation accuracy and efficiency. To address these issues, this study proposes a novel two-part invalid detection task allocation framework. In the first step, an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data. Compared to the baseline method, the model achieves an approximately 4% increase in the F1 value More >

  • Open Access

    ARTICLE

    Perception Enhanced Deep Deterministic Policy Gradient for Autonomous Driving in Complex Scenarios

    Lyuchao Liao1,2, Hankun Xiao2,*, Pengqi Xing2, Zhenhua Gan1,2, Youpeng He2, Jiajun Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 557-576, 2024, DOI:10.32604/cmes.2024.047452 - 16 April 2024

    Abstract Autonomous driving has witnessed rapid advancement; however, ensuring safe and efficient driving in intricate scenarios remains a critical challenge. In particular, traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles, susceptibility to traffic flow bottlenecks, and imperfect data in perceiving environmental information, rendering them a vital issue in the practical application of autonomous driving. To address the traffic challenges, this work focused on complex roundabouts with multi-lane and proposed a Perception Enhanced Deep Deterministic Policy Gradient (PE-DDPG) for Autonomous Driving in the Roundabouts. Specifically, the… More >

  • Open Access

    ARTICLE

    An Assisted Diagnosis of Alzheimer’s Disease Incorporating Attention Mechanisms Med-3D Transfer Modeling

    Yanmei Li1,*, Jinghong Tang1, Weiwu Ding1, Jian Luo2, Naveed Ahmad3, Rajesh Kumar4

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 713-733, 2024, DOI:10.32604/cmc.2023.046872 - 30 January 2024

    Abstract Alzheimer’s disease (AD) is a complex, progressive neurodegenerative disorder. The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice. In this study, we introduce an advanced diagnostic methodology rooted in the Med-3D transfer model and enhanced with an attention mechanism. We aim to improve the precision of AD diagnosis and facilitate its early identification. Initially, we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation, which are commonly observed in imaging datasets. Subsequently, an attention mechanism is incorporated to More >

  • Open Access

    ARTICLE

    Enhancing Breast Cancer Diagnosis with Channel-Wise Attention Mechanisms in Deep Learning

    Muhammad Mumtaz Ali, Faiqa Maqsood, Shiqi Liu, Weiyan Hou, Liying Zhang, Zhenfei Wang*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2699-2714, 2023, DOI:10.32604/cmc.2023.045310 - 26 December 2023

    Abstract Breast cancer, particularly Invasive Ductal Carcinoma (IDC), is a primary global health concern predominantly affecting women. Early and precise diagnosis is crucial for effective treatment planning. Several AI-based techniques for IDC-level classification have been proposed in recent years. Processing speed, memory size, and accuracy can still be improved for better performance. Our study presents ECAM, an Enhanced Channel-Wise Attention Mechanism, using deep learning to analyze histopathological images of Breast Invasive Ductal Carcinoma (BIDC). The main objectives of our study are to enhance computational efficiency using a Separable CNN architecture, improve data representation through hierarchical feature… More >

  • Open Access

    ARTICLE

    Liver Tumor Prediction with Advanced Attention Mechanisms Integrated into a Depth-Based Variant Search Algorithm

    P. Kalaiselvi1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1209-1226, 2023, DOI:10.32604/cmc.2023.040264 - 31 October 2023

    Abstract In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse diseases at specific intervals. Liver tumor prediction is a vital chore in analyzing and treating liver diseases. This paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks (CNN) and a depth-based variant search algorithm with advanced attention mechanisms (CNN-DS-AM). The proposed work aims to improve accuracy and robustness in diagnosing… More >

Displaying 1-10 on page 1 of 16. Per Page