Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access



    Revathi Gadamsettya,*, Venkata Subrahmanyam Sajjab , P. Sudam Sekharc, Dhaneshwar Prasadd,†

    Frontiers in Heat and Mass Transfer, Vol.15, No.1, pp. 1-7, 2020, DOI:10.5098/hmt.15.18

    Abstract Hydrodynamic lubrication characteristics of asymmetric rollers lubricated by non-Newtonian incompressible Bingham plastic fluid are analyzed in this work. It narrates the qualitative research with the rigid system in which the viscosity of the particular non-Newtonian Bingham plastic substance is considered to become the function of hydrodynamic pressure. The equations considered in this work like equation of motion along with continuity and energy equations are solved numerically using MATLAB after particular analytical steps. Resulting from this particular work, it is identified that there is some notable change in temperatures, pressure, load and traction forces with Newtonian and also non-Newtonian fluids both.… More >

  • Open Access



    Revathi Gadamsettya,*,† , Venkata Subrahmanyam Sajjab, P. Sudam Sekharc, Dhaneshwar Prasadd

    Frontiers in Heat and Mass Transfer, Vol.16, No.1, pp. 1-6, 2021, DOI:10.5098/hmt.16.7

    Abstract An attempt has been made to investigate hydrodynamic lubrication characteristics of asymmetric roller bearings lubricated by thin fluid film under the operating behavior of line contact for a heavily loaded rigid system for normal squeezing motion with cavitation points. The lubricant follows non-Newtonian incompressible Bingham plastic fluid model where the fluid viscosity is supposed to vary with hydrodynamic pressure . The equations which govern the fluid flow such as continuity and momentum equation are solved first analytically and later numerically using MATLAB. The numerical results are achieved for the velocity, pressure, load, and traction forces by varying different physical parameters… More >

  • Open Access



    Wenhua Liua,b, Mo Yangc,a,*, Yuwen Zhangb , Guiliang Liua , Liang Linga , Xuchen Yinga,*

    Frontiers in Heat and Mass Transfer, Vol.20, No.1, pp. 1-7, 2023, DOI:10.5098/hmt.20.15

    Abstract In this study, numerical investigations are performed on a partially premixed flame of methane and air in two- and three-dimensional models. Nonlinear method is adopted to illustrate the asymmetric phenomenon that affects the flame stability under various co-flow velocities. According to the results, the mathematical relationship between the flame flickering frequency Stanton number and the dimensionless velocity Froude number has been summarized as St=0.7Fr-0.46. The bifurcation phenomena under different Reynold numbers are found to have significant influence on the system stability. Two critical bifurcation points, which is when Re=300 and Re=1200, are determined as the onset of breaking the flame… More >

  • Open Access


    Asymmetric Consortium Blockchain and Homomorphically Polynomial-Based PIR for Secured Smart Parking Systems

    T. Haritha, A. Anitha*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3923-3939, 2023, DOI:10.32604/cmc.2023.036278

    Abstract In crowded cities, searching for the availability of parking lots is a herculean task as it results in the wastage of drivers’ time, increases air pollution, and traffic congestion. Smart parking systems facilitate the drivers to determine the information about the parking lot in real time and book them depending on the requirement. But the existing smart parking systems necessitate the drivers to reveal their sensitive information that includes their mobile number, personal identity, and desired destination. This disclosure of sensitive information makes the existing centralized smart parking systems more vulnerable to service providers’ security breaches, single points of failure,… More >

  • Open Access


    On a Novel Extended Lomax Distribution with Asymmetric Properties and Its Statistical Applications

    Aisha Fayomi1, Christophe Chesneau2,*, Farrukh Jamal3, Ali Algarni1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2371-2403, 2023, DOI:10.32604/cmes.2023.027000

    Abstract In this article, we highlight a new three-parameter heavy-tailed lifetime distribution that aims to extend the modeling possibilities of the Lomax distribution. It is called the extended Lomax distribution. The considered distribution naturally appears as the distribution of a transformation of a random variable following the logweighted power distribution recently introduced for percentage or proportion data analysis purposes. As a result, its cumulative distribution has the same functional basis as that of the Lomax distribution, but with a novel special logarithmic term depending on several parameters. The modulation of this logarithmic term reveals new types of asymetrical shapes, implying a… More >

  • Open Access


    Two Layer Symmetric Cryptography Algorithm for Protecting Data from Attacks

    Muhammad Nadeem1, Ali Arshad2, Saman Riaz2, Syeda Wajiha Zahra1, Shahab S. Band3, Amir Mosavi4,5,6,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2625-2640, 2023, DOI:10.32604/cmc.2023.030899

    Abstract Many organizations have insisted on protecting the cloud server from the outside, although the risks of attacking the cloud server are mostly from the inside. There are many algorithms designed to protect the cloud server from attacks that have been able to protect the cloud server attacks. Still, the attackers have designed even better mechanisms to break these security algorithms. Cloud cryptography is the best data protection algorithm that exchanges data between authentic users. In this article, one symmetric cryptography algorithm will be designed to secure cloud server data, used to send and receive cloud server data securely. A double… More >

  • Open Access


    Coordinated Rotor-Side Control Strategy for Doubly-Fed Wind Turbine under Symmetrical and Asymmetrical Grid Faults

    Quanchun Yan1,2,*, Chao Yuan1, Wen Gu1, Yanan Liu1, Yiming Tang1

    Energy Engineering, Vol.120, No.1, pp. 49-68, 2023, DOI:10.32604/ee.2022.018555

    Abstract In order to solve the problems of rotor overvoltage, overcurrent and DC side voltage rise caused by grid voltage drops, a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of rotor side converter of the doubly-fed generator is proposed. When the power grid voltage drops symmetrically, the generator approximate equation under steady-state conditions is no longer applicable. Considering the dynamic process of stator current excitation, according to the change of stator flux and the depth of voltage drop, the system can dynamically provide reactive power support for parallel nodes and suppress the rise of DC side… More >

  • Open Access


    Fault Ride-Through (FRT) Behavior in VSC-HVDC as Key Enabler of Transmission Systems Using SCADA Viewer Software

    Samuel Bimenyimana1, Chen Wang1,*, Godwin Norense Osarumwense Asemota2, Aphrodis Nduwamungu2, Francis Mulolani6, Jean De Dieu Niyonteze8, Shilpi Bora1,7, Chun-Ling Ho1, Noel Hagumimana3, Theobald Habineza4, Waqar Bashir5, Yiyi Mo1

    Energy Engineering, Vol.119, No.6, pp. 2369-2406, 2022, DOI:10.32604/ee.2022.019257

    Abstract The world’s energy consumption and power generation demand will continue to rise. Furthermore, the bulk of the energy resources needed to satisfy the rising demand is far from the load centers. The aforementioned requires long-distance transmission systems and one way to accomplish this is to use high voltage direct current (HVDC) transmission systems. The main technical issues for HVDC transmission systems are loss of synchronism, variation of quadrature currents, amplitude, the inability of station 1 (rectifier), and station 2 (inverter) to either inject, or absorb active, or reactive power in the network in any circumstances (before a fault occurs, during… More >

  • Open Access


    Experimental Investigation of Regular or Wavy Two-Phase Flow in a Manifold

    Xiaowei Nie1, Lihui Ma2,*, Yiqiu Xu3, Dong Sun2, Weibo Zheng2, Liang Zhou2, Xiaodong Wang2, Xiaohan Zhang2, Weijia Dong2, Yunfei Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 37-50, 2023, DOI:10.32604/fdmp.2023.021118

    Abstract An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold. A total of 103 experiments with various gas and liquid velocity combinations in three inlet pipes were conducted, including 77 groups of outlet pipe resistance symmetry and 26 groups of outlet pipe resistance asymmetry trials. The experimental results have revealed that when the gas-liquid flow rate is low, the degree of uneven splitting is high, and “extreme” conditions are attained. When the superficial gas velocity is greater than that established in the extreme case, the direction… More >

  • Open Access


    Asymmetric Patch Element Reflectarray with Dual Linear and Dual Circular Polarization

    M. Hashim Dahri1, M. H. Jamaluddin2, M. Inam3, M. R. Kamarudin4, F. C. Seman4, A. Y. I. Ashyap4, Z. A. Shamsan5,*, K. Almuhanna5, F. Alorifi5

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6085-6101, 2022, DOI:10.32604/cmc.2022.031532

    Abstract A reflectarray antenna consisting of asymmetrical patch elements is proposed, which is capable of producing dual linear and dual circular polarized operation at 26 GHz frequency. The main purpose of this design is to support four different polarizations using the same patch element. The proposed reflectarray has a single layer configuration with a linearly polarized feed and circular ring slots in the ground plane. Asymmetric patch element is designed from a square patch element by tilting its one vertical side to some optimized inclination. A wide reflection phase range of 600° is obtained with the asymmetric patch element during unit cell… More >

Displaying 1-10 on page 1 of 34. Per Page  

Share Link