Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector

    Monerah Alawadh*, Ahmed Barnawi

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4995-5015, 2024, DOI:10.32604/cmc.2024.048762 - 20 June 2024

    Abstract Association rule learning (ARL) is a widely used technique for discovering relationships within datasets. However, it often generates excessive irrelevant or ambiguous rules. Therefore, post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors. Recently, several post-processing methods have been proposed, each with its own strengths and weaknesses. In this paper, we propose THAPE (Tunable Hybrid Associative Predictive Engine), which combines descriptive and predictive techniques. By leveraging both techniques, our aim is to enhance the quality of analyzing generated rules. This includes removing irrelevant… More >

  • Open Access

    ARTICLE

    A Deep Learning Based Sentiment Analytic Model for the Prediction of Traffic Accidents

    Nadeem Malik1,*, Saud Altaf1, Muhammad Usman Tariq2, Ashir Ahmed3, Muhammad Babar4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1599-1615, 2023, DOI:10.32604/cmc.2023.040455 - 29 November 2023

    Abstract The severity of traffic accidents is a serious global concern, particularly in developing nations. Knowing the main causes and contributing circumstances may reduce the severity of traffic accidents. There exist many machine learning models and decision support systems to predict road accidents by using datasets from different social media forums such as Twitter, blogs and Facebook. Although such approaches are popular, there exists an issue of data management and low prediction accuracy. This article presented a deep learning-based sentiment analytic model known as Extra-large Network Bi-directional long short term memory (XLNet-Bi-LSTM) to predict traffic collisions More >

  • Open Access

    ARTICLE

    Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification

    Firas Abedi1, Hayder M. A. Ghanimi2, Abeer D. Algarni3, Naglaa F. Soliman3,*, Walid El-Shafai4,5, Ali Hashim Abbas6, Zahraa H. Kareem7, Hussein Muhi Hariz8, Ahmed Alkhayyat9

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2791-2814, 2023, DOI:10.32604/csse.2023.038762 - 09 November 2023

    Abstract Data mining plays a crucial role in extracting meaningful knowledge from large-scale data repositories, such as data warehouses and databases. Association rule mining, a fundamental process in data mining, involves discovering correlations, patterns, and causal structures within datasets. In the healthcare domain, association rules offer valuable opportunities for building knowledge bases, enabling intelligent diagnoses, and extracting invaluable information rapidly. This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System (MLARMC-HDMS). The MLARMC-HDMS technique integrates classification and association rule mining (ARM) processes. Initially, the chimp… More >

  • Open Access

    ARTICLE

    An Adaptive Privacy Preserving Framework for Distributed Association Rule Mining in Healthcare Databases

    Hasanien K. Kuba1, Mustafa A. Azzawi2, Saad M. Darwish3,*, Oday A. Hassen4, Ansam A. Abdulhussein5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4119-4133, 2023, DOI:10.32604/cmc.2023.033182 - 31 October 2022

    Abstract It is crucial, while using healthcare data, to assess the advantages of data privacy against the possible drawbacks. Data from several sources must be combined for use in many data mining applications. The medical practitioner may use the results of association rule mining performed on this aggregated data to better personalize patient care and implement preventive measures. Historically, numerous heuristics (e.g., greedy search) and metaheuristics-based techniques (e.g., evolutionary algorithm) have been created for the positive association rule in privacy preserving data mining (PPDM). When it comes to connecting seemingly unrelated diseases and drugs, negative association… More >

  • Open Access

    ARTICLE

    Effective Diagnosis of Lung Cancer via Various Data-Mining Techniques

    Subramanian Kanageswari1, D. Gladis2, Irshad Hussain3,*, Sultan S. Alshamrani4, Abdullah Alshehri5

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 415-428, 2023, DOI:10.32604/iasc.2023.032053 - 29 September 2022

    Abstract One of the leading cancers for both genders worldwide is lung cancer. The occurrence of lung cancer has fully augmented since the early 19th century. In this manuscript, we have discussed various data mining techniques that have been employed for cancer diagnosis. Exposure to air pollution has been related to various adverse health effects. This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer. We have introduced data mining in lung cancer to air pollution, and our approach… More >

  • Open Access

    ARTICLE

    Association Rule Mining Frequent-Pattern-Based Intrusion Detection in Network

    S. Sivanantham1,*, V. Mohanraj2, Y. Suresh2, J. Senthilkumar2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1617-1631, 2023, DOI:10.32604/csse.2023.025893 - 15 June 2022

    Abstract In the network security system, intrusion detection plays a significant role. The network security system detects the malicious actions in the network and also conforms the availability, integrity and confidentiality of data information resources. Intrusion identification system can easily detect the false positive alerts. If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks. Many research works have been done. The issues in the existing algorithms are more memory space and need more time to execute the transactions of More >

  • Open Access

    ARTICLE

    Association Rule Analysis-Based Identification of Influential Users in the Social Media

    Saqib Iqbal1, Rehan Khan2, Hikmat Ullah Khan2,*, Fawaz Khaled Alarfaj4, Abdullah Mohammed Alomair3, Muzamil Ahmed2

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6479-6493, 2022, DOI:10.32604/cmc.2022.030881 - 28 July 2022

    Abstract The exchange of information is an innate and natural process that assist in content dispersal. Social networking sites emerge to enrich their users by providing the facility for sharing information and social interaction. The extensive adoption of social networking sites also resulted in user content generation. There are diverse research areas explored by the researchers to investigate the influence of social media on users and confirmed that social media sites have a significant impact on markets, politics and social life. Facebook is extensively used platform to share information, thoughts and opinions through posts and comments.… More >

  • Open Access

    ARTICLE

    A Survey on Methods and Applications of Intelligent Market Basket Analysis Based on Association Rule

    Monerah M. Alawadh*, Ahmed M. Barnawi

    Journal on Big Data, Vol.4, No.1, pp. 1-25, 2022, DOI:10.32604/jbd.2022.021744 - 04 May 2022

    Abstract The market trends rapidly changed over the last two decades. The primary reason is the newly created opportunities and the increased number of competitors competing to grasp market share using business analysis techniques. Market Basket Analysis has a tangible effect in facilitating current change in the market. Market Basket Analysis is one of the famous fields that deal with Big Data and Data Mining applications. MBA initially uses Association Rule Learning (ARL) as a mean for realization. ARL has a beneficial effect in providing a plenty benefit in analyzing the market data and understanding customers’ More >

  • Open Access

    ARTICLE

    Improving Association Rules Accuracy in Noisy Domains Using Instance Reduction Techniques

    Mousa Al-Akhras1,2,*, Zainab Darwish2, Samer Atawneh1, Mohamed Habib1,3

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3719-3749, 2022, DOI:10.32604/cmc.2022.025196 - 29 March 2022

    Abstract Association rules’ learning is a machine learning method used in finding underlying associations in large datasets. Whether intentionally or unintentionally present, noise in training instances causes overfitting while building the classifier and negatively impacts classification accuracy. This paper uses instance reduction techniques for the datasets before mining the association rules and building the classifier. Instance reduction techniques were originally developed to reduce memory requirements in instance-based learning. This paper utilizes them to remove noise from the dataset before training the association rules classifier. Extensive experiments were conducted to assess the accuracy of association rules with… More >

  • Open Access

    ARTICLE

    Preserving Data Confidentiality in Association Rule Mining Using Data Share Allocator Algorithm

    D. Dhinakaran1,*, P. M. Joe Prathap2

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1877-1892, 2022, DOI:10.32604/iasc.2022.024509 - 24 March 2022

    Abstract These days, investigations of information are becoming essential for various associations all over the globe. By and large, different associations need to perform information examinations on their joined data sets. Privacy and security have become a relentless concern wherein business experts do not desire to contribute their classified transaction data. Therefore, there is a requirement to build a proficient methodology that can process the broad mixture of data and convert those data into meaningful knowledge to the user without forfeiting the security and privacy of individuals’ crude information. We devised two unique protocols for frequent… More >

Displaying 1-10 on page 1 of 22. Per Page